Products
Services
Applications
Resources Get started

Applications Investigations

Single nucleotide variants (SNVs) and phasing

Single nucleotide variants (SNVs) have been widely studied for their associations with phenotypic variation and disease; they are also used to phase haplotypes. However, the use of traditional sequencing technology requires PCR, limiting SNV detection to regions amenable to amplification, and short reads make phasing challenging to resolve. With long-read nanopore sequencing, PCR is not necessary, revealing SNPs in regions inaccessible to other technologies, and phasing is greatly simplified.

Phase SNVs and resolve compound heterozygosity using long sequencing reads

Phase SNVs and resolve compound heterozygosity using long sequencing reads

Perform real-time analysis with high precision and recall

Perform real-time analysis with high precision and recall

Scale to your requirements with a range of nanopore sequencing platforms

Scale to your requirements with a range of nanopore sequencing platforms

Introduction

INTRODUCTION

Enhance variant calling and phasing with long sequencing reads

Array-based and short-read sequencing analyses of SNVs have shed light on the association between SNVs and the inheritance of complex diseases. However, data from such technologies is only available when a run is completed, which can prevent a rapid response in situations where speed may be vital, such as in outbreak investigations, forensic analysis, and clinical research. Real-time sequencing and analysis with Oxford Nanopore technology provide rapid sample-to-genotype, enabling an immediate response. The technology is also scalable: high-throughput variant calling in larger genomes or in multiplexed samples can be performed with GridION and PromethION; the portable MinION is ideal for variant calling in smaller genomes, and for targeted detection, both in the laboratory and in the field.

Assigning a variant to the maternal or paternal chromosome is important for understanding inheritance patterns, mosaicism, and parental origin of de novo mutations, for example. To directly resolve the haplotype of two heterozygous SNPs, they both need to be present within the same sequencing read. This is inherently challenging with short sequencing reads. Nanopore long reads provide sequence context and enhance the phasing of variants (Figure 1).

Phasing of single nucleotide variants

Figure 1: Compared to phasing with short-read sequencing or array-based data, phasing of single nucleotide variants (SNVs) is enhanced with long nanopore sequencing reads, as variants are more likely to be located within the same read.

Introduction 2
SNP and indel calling table

Table 1: The latest precision, recall, and F1 (harmonic mean of precision and recall) for small variant calling, using nanopore sequencing data for chromosome 20 of the human genome (NA24385; HG002), at 60x depth of coverage. A recommended analysis tool chain for achieving similar metrics is also shown. The GIAB high-confidence call set was used as the truth set. For more information please see the GitHub Variant calling page.

Nanopore sequencing enables genome-wide variant calling with high precision and recall

Traditional short-read-based methods for SNV calling require PCR, which can introduce bias, and prevents investigation into genomic regions that are not amenable to amplification. With Oxford Nanopore, native DNA strands can be sequenced, negating the requirement for PCR; this enables greater breadth of genome coverage for SNV calling, as well as access to methylation information from the same sequencing run as standard.

High precision and recall of genomic variants can be obtained from nanopore sequence data. Table 1 displays the latest Oxford Nanopore benchmarking metrics for SNP and indel calling in the human genome, and recommended tools to achieve similar values. The development and optimisation of variant calling tools is a very active area of research. Different bioinformatics tools for SNP calling show variation in performance, and therefore it is important to optimise filtering parameters of the analysis workflow to achieve the best sensitivity and specificity.

Case study

CASE STUDY

Identifying and phasing mutations in the GBA gene using long nanopore sequencing reads

…in addition to disease‐causing variants, [the MinION] can detect intronic ones and provide phasing information. The MinION protocol can thus provide further insights into GBA than other sequencing technologies…’

Leija-Salazar et al.

Mutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase, cause Gaucher disease when biallelic, and are strongly associated with Parkinson’s disease. The nearby pseudogene GBAP, which has 96% exonic sequence identity to the GBA coding region, makes analysis of this gene challenging for short-read sequencing due to incorrect mapping.

Leija-Salazar et al. evaluated long-read MinION sequencing of an 8.9 kb amplicon spanning the GBA gene, from 102 individuals. All known missense mutations, including the common p.N409S (N370S) and p.L483P (L444P) mutations, were detected, plus additional rare variants. The team also successfully phased mutations. Any rare false positive SNVs were easily identified and filtered.

The researchers determined that >100x depth of coverage could detect all variants, with no false positives after filtering, although they suggested that a lower depth of coverage (~50x) may be adequate.

Sequencing workflow

Sequencing workflow

How can I call and phase SNVs/SNPs with nanopore sequencing?

To perform genome-wide small variant calling with nanopore technology, we recommend sequencing a whole human genome on the PromethION, or sequencing on the MinION or GridION for targeted analyses. Libraries can be prepared using the Ligation Sequencing Kit, for high throughput and long reads, without amplification.

We recommend Medaka for calling single nucleotide variants and indels. However, other analysis tools are also available from the Community. 

Looking for an end-to-end SNP calling workflow?

Visit the Protocol Builder to create a custom, end-to-end protocol for your experiment

Protocol Builder
Get started

GET STARTED

Human whole-genome SNP/SNV calling

For genome-wide identification of SNPs/SNVs in human samples, we recommend the following:

Ligation Sequencing Kit (SQK-LSK109) Ligation Sequencing Kit (SQK-LSK109) Ligation Sequencing Kit (SQK-LSK109)
portable MinION
Looking for lower throughput?

Find out more about our lower-throughput sequencing platforms, including MinION Mk1B and Mk1C.

Compare products

Subscribe

Get in touch


Talk to us

If you have any questions about our products or services, chat directly with a member of our sales team.

Talk to us

Book a sales call

To book a call with one of our sales team, please click below.

Book a call
Open a chat to talk to our sales team
Subscribe

Subscribe

FAQs

FAQs

Search