Ligation sequencing V14 — Human cfDNA multiplex (SQK-NBD114.24)


概要

Method outlining sample extraction, library preparation, sequencing and data analysis. This protocol:

  • uses human cfDNA
  • enables multiplexing of 12 samples
  • is compatible with R10.4.1 flow cells

For Research Use Only

Document version: CFM_9208_v114_revD_20Nov2024

1. Overview of the protocol

Introduction to the multiplex human cfDNA sequencing protocol

This protocol describes how to carry out preparation and sequencing of 12 human cell-free DNA (cfDNA) samples using the Native Barcoding Kit 24 V14 (SQK-NBD114.24). Typically, we obtain ~3 Gb of aligned data (1x coverage) for each of the 12 human cfDNA samples processed with this protocol.

Please note: This method has been developed for multiplexing 12 samples. We do not recommend deviating from the outlined method.
Reducing the number of samples multiplexed may lead to an increase in coverage, but increasing the number of samples multiplexed will lead to a reduction in coverage of aligned data per sample.

Prior to library preparation, the sample extraction is carried out using the QIAGEN QIAamp MinElute ccfDNA Midi Kit and following our Human blood cell-free DNA (cfDNA) extraction for multiplex sequencing method.

Note: We recommend that blood samples are processed while fresh, as we have observed potential gDNA contamination arising from blood that has been stored in certain types of collection tubes.

For more information on the development and performance of this method, please refer to our Updated method for cell-free DNA (cfDNA) methylation profiling know-how document. An additional know-how document is also available for the optimisation of library preparation for longer cell-free DNA (cfDNA).

Steps in the workflow

Prepare for your experiment

You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Sample preparation

Using the outlined extraction method, extract the cfDNA from your human blood samples, and quantify the DNA:


Library preparation

The table below is an overview of the steps required in the library preparation, including timings and optional stopping points.

Library preparation Process Time Stop option
DNA repair and end-prep Repair the cfDNA and prepare the DNA ends for adapter attachment 125 minutes 4°C overnight
Native barcode ligation Ligate the native barcodes to the DNA ends 60 minutes 4°C overnight
Adapter ligation and clean-up Attach the sequencing adapters to the DNA ends 50 minutes 4°C short-term storage or for repeated use, such as re-loading your flow cell
-80°C for single-use, long-term storage.
We strongly recommend sequencing your library as soon as it is adapted.
Priming and loading the flow cell Prime the flow cell and load the prepared library for sequencing 5 minutes

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software which will collect raw data from the device and basecall reads.
  • (Optional) Raw sequencing data can be basecalled and aligned to a reference using dorado.
  • (Optional) Start the EPI2ME software and select a bioinformatics workflow to analyse your data. Alternatively, external tools can be used to further analyse and explore your data.
重要

Compatibility of this protocol

This protocol should only be used in combination with:

2. Equipment and consumables

材料
  • (FOR EXTRACTION) ≥3.5 ml blood in EDTA K2 vacuum tube or ≥1ml plasma, per sample
  • (FOR LIBRARY PREPARATION) ≥6 ng of recovered human cfDNA per sample
  • Native Barcoding Kit 24 V14 (SQK-NBD114.24)

消耗品
  • PromethION Flow Cell
  • QIAamp MinElute ccfDNA Midi Kit (QIAGEN, 55284)
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
  • NEBNext FFPE DNA Repair v2 Module (NEB, E7360)
  • NEBNext Ultra II End repair/dA-tailing Module (NEB, E7546)
  • NEB Blunt/TA Ligase Master Mix (NEB, M0367)
  • NEBNext Quick Ligation Module (NEB, E6056)
  • Ethanol, 100% (e.g. Fisher, 16606002)
  • Isopropanol
  • ヌクレアーゼフリー水で用事調整した 80% エタノール溶液
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • 5 ml Eppendorf DNA LoBind tubes
  • 15 ml Falcon tubes
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml 薄壁のPCRチューブ

装置
  • PromethION device
  • PromethION Flow Cell Light Shield
  • Centrifuge with capacity for 5 ml and 15 ml tubes, and a swing out and fixed angle rotors
  • Hula mixer(緩やかに回転するミキサー)
  • Magnetic rack for 15 ml tubes
  • 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
  • Thermomixer, or other shaker for microcentrifuge tubes, with capacity to heat at 56°C
  • 小型遠心機
  • ボルテックスミキサー
  • サーマルサイクラー
  • P1000 ピペット及びチップ
  • P200 ピペットとチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
  • P2 ピペットとチップ
  • アイスバケツ(氷入り)
  • タイマー
  • Qubit蛍光光度計(またはQCチェックのための同等品)
重要

The above list of materials, consumables, and equipment is for the extraction method in the sample preparation section, as well as the library preparation section of the protocol. If you have pre-extracted sample(s), you will only require the materials for the library preparation section of this protocol.

This protocol has been developed to process and sequence 12 samples. The following inputs are required:

Input requirements per sample for the extraction method:

  • ≥3.5 ml of fresh blood in EDTA K2 vacuum tube or ≥1ml plasma, per sample

Note: We recommend that blood samples are processed while fresh, as we have observed potential gDNA contamination arising from blood that has been stored in certain types of collection tubes.

Input requirements per sample for the library preparation:

  • Use ≥6 ng of recovered cfDNA, per sample as input. Inputs should be normalised so the same mass of sample is used in each reaction.

Note: This method has been developed for multiplexing 12 samples. We do not recommend deviating from the outlined method.

インプットDNA

インプットDNAのQC方法

インプットDNAの量と品質の要件を満たすことが重要です。DNAの使用量が少なすぎたり多すぎたり、あるいは品質の低いDNA(例としてDNAが非常に断片化されていたり、RNAや化学汚染物質が含まれている場合など)を使用すると、ライブラリーの調製に影響を及ぼす可能性があります。

DNAサンプルの品質管理の方法については、Input DNA/RNA QC protocolのプロトコルをご覧ください。

コンタミネーション

DNAの抽出する方法によっては、精製DNAに特定の化学汚染物質が残留する可能性があり、ライブラリ調製の効率やシークエンシングの品質に影響を及ぼす可能性があります。コンタミネーションについての詳細は、コミュニティーの Contaminants page をご覧ください。

サードパーティー試薬

このプロトコールで使用されているすべてのサードパーティー試薬は、当社が検証し、使用を推奨しているものです。Oxford Nanopore Technologiesでは、それ以外の試薬を用いたテストは行っていません。

すべてのサードパーティ製試薬については、製造元の指示に従って使用の準備をすることをお勧めします。

フローセルのチェックをしてください

シークエンシング実験を開始する前に、フローセルのポアの数を確認することを強くお勧めします。このフローセルの確認は、MinION/GridION/PromethIONの場合は代理店への到着から12週間以内に行ってください。またはFlongle Flow Cellの場合は代理店への到着から4週間以内に行う必要があります。Oxford Nanopore Technologiesは、フローセルチェックの実施から2日以内に結果が報告され、推奨される保管方法に従っていた場合に、以下の表に記載されているナノポアの有効数に満たさない場合には、フローセルを交換します。 フローセルのチェックを行うには、Flow Cell Check documentの指示に従ってください。

Flow cell 保証する最小有効ポア数(以下の数未満のフローセルが交換対象となります)
Flongle Flow Cell 50
MinION/GridION Flow Cell 800
PromethION Flow Cell 5000
重要

We do not recommend mixing barcoded libraries with non-barcoded libraries prior to sequencing.

重要

The Native Adapter (NA) included in this kit and protocol is not interchangeable with other sequencing adapters.

Native Barcoding Kit 24 V14 (SQK-NBD114.24) contents

Note: We are in the process of reformatting the barcodes provided in this kit into a plate format. This will reduce plastic waste and will facilitate automated applications.

Plate format

SQK-NBD114.24 plate format

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
DNA Control Sample DCS Yellow 2 35
Native Adapter NA Green 1 40
Sequencing Buffer SB Red 1 700
Library Beads LIB Pink 1 600
Library Solution LIS White cap, pink label 1 600
Elution Buffer EB Black 2 500
AMPure XP Beads AXP Clear cap, light teal label 1 6,000
Long Fragment Buffer LFB Orange 1 1,800
Short Fragment Buffer SFB Clear 1 1,800
EDTA EDTA Blue 1 700
Flow Cell Flush FCF Clear cap, light blue label 1 8,000
Flow Cell Tether FCT Purple 1 200
Native Barcode plate NB01-24 - 2 plates, 3 sets of barcodes per plate 5 µl per well

Note: This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.

Note: The DNA Control Sample (DCS) is a 3.6 kb standard amplicon mapping the 3' end of the Lambda genome.


Vial format

SQK-NBD114.24 bottle format

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Native Barcodes NB01-24 Clear 24 (one per barcode) 20
DNA Control Sample DCS Yellow 2 35
Native Adapter NA Green 1 40
Sequencing Buffer SB Red 1 700
Library Beads LIB Pink 1 600
Library Solution LIS White cap, pink label 1 600
Elution Buffer EB Black 2 500
AMPure XP Beads AXP Clear cap, light teal label 1 6,000
Long Fragment Buffer LFB Orange 1 1,800
Short Fragment Buffer SFB Clear 1 1,800
EDTA EDTA Blue 1 700
Flow Cell Flush FCF Clear cap, light blue label 1 8,000
Flow Cell Tether FCT Purple 1 200

Note: This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.

Note: The DNA Control Sample (DCS) is a 3.6 kb standard amplicon mapping the 3' end of the Lambda genome.

3. Sample extraction method for multiplex sequencing of human cfDNA

材料
  • ≥3.5 ml fresh human blood in EDTA K2 vacuum tube or ≥1ml plasma, per sample

消耗品
  • QIAamp MinElute ccfDNA Midi Kit (QIAGEN, 55284)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
  • Ethanol, 100% (e.g. Fisher, 16606002)
  • Isopropanol
  • nuclease-free waterで調整した 80% エタノール溶液
  • Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • 5 ml Eppendorf DNA LoBind tubes
  • 15 ml Falcon tubes
  • 0.2 ml thin-walled PCR tubes
  • 1.5 ml Eppendorf DNA LoBind tubes

装置
  • Centrifuge with capacity for 5 ml and 15 ml tubes, and a swing out and fixed angle rotors
  • Microfuge
  • Hula mixer(緩やかに回転するミキサー)
  • Magnetic rack for 15 ml tubes
  • Magnetic rack
  • ボルテックスミキサー
  • P1000 pipette and tips
  • P100 ピペットとチップ
  • Thermal cycler
  • Ice bucket with ice
  • Qubit fluorometer (or equivalent for QC check)
オプション装置
  • Agilent Femto Pulse System (or equivalent for read length QC)

Optimised extraction: Human blood cell-free DNA (cfDNA) extraction for multiplex sequencing

This extraction method can also be found in the Extraction Protocols tab in the Documentation space on the Nanopore Community: Human blood cell-free DNA (cfDNA) extraction for multiplex sequencing.

These instructions describe a method to extract cell-free DNA (cfDNA) from 12 human blood samples collected in EDTA K2 vacuum tubes (step 1), or human plasma (step 3). The extraction is performed using the QIAGEN QIAamp MinElute ccfDNA Midi Kit.

Note: The yield, DIN and sequencing read length of extracted DNA may vary depending on initial sample quality. Please ensure you are following the correct method and using high-quality sample inputs.

オプショナルステップ

Alternatively, if you have previously extracted and stored your cfDNA sample(s), this can be used directly in the Library preparation section of this protocol.

重要

We recommend that blood samples are processed while fresh, as we have observed potential gDNA contamination arising from blood that has been stored in certain types of collection tubes.

Preparation of plasma from fresh blood

Centrifuge ≥3.5 ml of fresh blood (overnight chilled delivery) in the EDTA K2 vacuum tube at 1900 x g for 10 minutes at 4°C in a swing out rotor centrifuge.

Pipette and transfer the supernatant (this is the plasma fraction) to a fresh 5 ml DNA LoBind Eppendorf tube.

We recommend a minimum plasma volume of 1 ml is used, although volumes up to 4 ml have been validated.

To remove residual cells from the plasma, centrifuge the plasma at 16,000 x g for 10 minutes (or 6,000 x g for 30 minutes depending on the spin capacity of the centrifuge) at 4°C, in a fixed angle rotor.

重要

It is important to remove residual cells from the sample when the blood/plasma is still fresh (from an overnight chilled delivery). Failing to do so will result in increased amounts of gDNA contamination in the sequencing library.

Aspirate the supernatant and transfer it to a fresh 15 ml tube.

Purification of cfDNA from 1–5 ml serum or plasma Using the QIAamp MinElute ccfDNA Midi Kit

Before starting the extraction:

  • Prepare a shaker for microcentrifuge tubes at room temperature for use in step 14.
  • Preheat a second shaker at 56°C for use in step 26. (Alternatively, equilibrate the first shaker to 56°C after step 14).
  • Resuspend Magnetic Bead Suspension (from the QIAGEN QIAamp MinElute ccfDNA Midi Kit) by pulse-vortexing for 1 min.
    Note: Do not let the suspension settle for more than 2 min before use. Pipette from the centre of the suspension.

Prepare the buffers for extraction:

  • Add 8 ml isopropanol (100%) to 12 ml Buffer ACB concentrate to obtain 20 ml Buffer ACB. Mix well after adding isopropanol.
  • Add 30 ml ethanol (96–100%) to 13 ml Buffer ACW2 concentrate to obtain 43 ml Buffer ACW2. Mix well after adding ethanol.

Mix the following components according to the instructions below in a 15 ml tube:

Component Volume for 1 ml plasma (µl) Volume for 2 ml plasma (µl) Volume for 3 ml plasma (µl) Volume for 4 ml plasma (µl) Volume for 5 ml plasma (µl)
Plasma 1,000 2,000 3,000 4,000 5,000
Magnetic Bead Suspension 30 60 90 120 150
Proteinase K 55 110 165 220 275
Bead Binding Buffer 150 300 450 600 750
Total volume 1,235 2,470 3,705 4,940 6,175

Incubate the reaction for 10 min at room temperature while shaking (at a slow speed) end-over-end.

Spin the tube down briefly (30 seconds at 200 x g) to remove any solution in the cap.

Place the tube containing bead solution into a magnetic rack for 15 ml tubes. Let the tube stand for at least 1 min, until the solution is clear.

Remove and discard supernatant.

Remove the tube from the magnetic rack and add 200 µl of Bead Elution Buffer to the bead pellet. Vortex to resuspend beads, and pipette up and down to mix and rinse residual beads from the tube wall.

Transfer the full volume of mixture (including the beads) into a Bead Elution Tube.

Incubate for 5 min on a shaker for microcentrifuge tubes at room temperature and 300 rpm.

Note: If the same shaker for microcentrifuge tubes is to be used in step 26, remove the tubes after the room temperature incubation and equilibrate the shaker to 56°C

Place the Bead Elution Tube containing the bead solution into a magnetic rack for 2 ml tubes. Let the tube stand for at least 1 min, until the solution is clear.

Transfer the supernatant into a new Bead Elution tube. Discard the bead pellet.

Avoid transferring any magnetic beads in this step. Carryover may result in reduced cfDNA yield.

Add 300 µl Buffer ACB to the Bead Elution tube containing the supernatant, and vortex to mix. Briefly centrifuge the tube to remove drops from inside the lid.

Pipet the supernatant–Buffer ACB mixture from the previous step into a QIAamp UCP MinElute column.

Centrifuge for 1 min at 6,000 x g.

Place the QIAamp UCP MinElute column into a clean 2 ml collection tube, and discard the flow-through.

Add 500 µl Buffer ACW2 to the QIAamp UCP MinElute column.

Centrifuge for 1 min at 6,000 x g.

Place the QIAamp UCP MinElute column into a clean 2 ml collection tube, and discard the flow-through.

Centrifuge the QIAamp UCP MinElute column at 20,000 x g for 3 min.

Place the QIAamp UCP MinElute column into a new 1.5 ml elution tube and discard the 2 ml collection tube.

Open the lid of the tube and incubate the assembly in a shaker for microcentrifuge tubes at 56°C for 3 min to dry the membrane completely.

Carefully pipet 23 µl of ultra-clean water into the centre of the membrane. Close the lid and incubate at room temperature for 1 min.

Centrifuge at 20,000 x g for 1 min to elute the DNA.

To maximise yield from the elution: Place the QIAamp UCP MinElute column in a clean 1.5 ml elution tube. Aspirate the eluate from the previous step and reload it onto the centre of the membrane. Close the lid and incubate 1 min at room temperature.

Centrifuge at 20,000 x g for 1 min to elute the DNA.

Quantify 1 µl of eluted sample using a Qubit fluorometer.

From 1 ml of plasma, you can expect a yield of ≥ 6 ng cfDNA.

オプショナルステップ

We recommend that the fragment length profiles of extracted cfDNA samples are analysed using a Femto Pulse (Agilent), or equivalent:

Frag length femtopulse cfDNA singleplex extract

Fragment length profile of extracted cfDNA, run on a Femto Pule (Agilent). This example shows the characteristic nucleosome peaks with minimal gDNA contamination.

最終ステップ

Take forward ≥6 ng of recovered cfDNA, for each of the 12 samples, to the library preparation stage of the protcol.

4. DNA repair and end-prep

材料
  • ≥6 ng of recovered human cfDNA per sample (12 samples)
  • AMPure XP Beads (AXP)

消耗品
  • NEBNext FFPE DNA Repair v2 Module (NEB, E7360)
  • NEBNext® Ultra II End Repair / dA-tailing Module (NEB, E7546)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • ヌクレアーゼフリー水で用事調整した 80% エタノール溶液
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • 0.2 ml 薄壁のPCRチューブ
  • 1.5 ml Eppendorf DNA LoBind tubes

装置
  • P1000 ピペット及びチップ
  • P100 ピペットとチップ
  • P10 ピペットとチップ
  • 小型遠心機
  • サーマルサイクラー
  • Hula mixer(緩やかに回転するミキサー)
  • マグネットラック
  • アイスバケツ(氷入り)
オプション装置
  • Qubit蛍光光度計(またはQCチェックのための同等品)

Prepare the NEBNext FFPE DNA Repair Mix, the NEBNext FFPE DNA Repair Buffer v2 and NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer’s instructions, and place on ice.

For optimal performance, NEB recommend the following:

  1. Thaw all reagents on ice.

  2. Flick and/or invert the reagent tubes to ensure they are well mixed.
    Note: Do not vortex the FFPE DNA Repair Mix, NEB Thermoliable Proteinase K or Ultra II End Prep Enzyme Mix.

  3. Always spin down tubes before opening for the first time each day.

  4. The FFPE DNA Repair Buffer v2 may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for 30 seconds to solubilise any precipitate.
    Note: It is important the buffers are mixed well by vortexing.

  5. The FFPE DNA Repair Buffer v2 may have a yellow tinge and is fine to use if yellow.

Use ≥6 ng of recovered cfDNA, per sample as input. Inputs should be normalised so the same mass of sample is used in each reaction.

Prepare your cfDNA samples in nuclease-free water:

  1. For each sample, ensure you have ≥6 ng of extracted cfDNA from the sample extraction, and transfer this into a 0.2 ml thin-walled PCR tube.
    Note: You should have 12 sample tubes.

  2. Adjust the volume to 20 μl with nuclease-free water.

  3. Mix thoroughly by pipetting up and down, or by flicking the tube.

  4. Spin down briefly in a microfuge.

In each of the 0.2 ml thin-walled PCR tube containing your cfDNA samples, mix the following:

Reagent Volume
cfDNA from the previous step 20 µl
NEBNext FFPE DNA Repair Buffer v2 3 µl
NEBNext FFPE DNA Repair Mix v2 0.9 µl
Total 23.9 µl

反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。

Using a thermal cycler with a heated lid set to 50°C, incubate the reaction at 37°C for 15 minutes and hold at 4°C.

Remove the reaction from the thermal cycler and place the tube on ice.

Keeping the tubes on ice, add 0.9 µl of NEBNext Thermolabile Proteinase K directly to each of the repaired reaction mixtures.

Mix by pipetting 10 times, followed by spinning down quickly to collect all liquid from the sides of the tube.

Using a thermal cycler with a heated lid set to 75°C, incubate at 37°C for 15 minutes and 65°C for 5 minutes, then hold at 4°C.

Remove the reaction from the thermal cycler and place the tube on ice.

Keeping the tube on ice, add 1.3 µl of NEBNext Ultra II End Prep Enzyme Mix directly to the reaction mixture for a total volume of 26.1 µl.

Mix by pipetting 10 times, followed by spinning down quickly to collect all liquid from the sides of the tube.

Using a thermal cycler with a heated lid set to 75°C, incubate at 20°C for 30 minutes and 65°C for 30 minutes, then hold at 4°C.

AMPure XP ビーズ(AXP)をボルテックスで懸濁します。

Transfer the each cfDNA sample into a separate clean 1.5 ml Eppendorf DNA LoBind tube.

Add 80 µl of resuspended the AMPure XP Beads (AXP) to each end-prep reaction and mix by flicking the tube.

Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。

Prepare 5 ml of fresh 80% ethanol in nuclease-free water.

Note: Ensure you prepare sufficient 80% ethanol for your 12 samples.

チューブをスピンダウンした後、マグネットラック上で、上清が無色透明になるまで置きます。チューブを磁石の上に置いたまま、上清をピペットで取り除いていきます。ピペットを使用してエタノールを除去し 、 廃棄してください。

Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.

前のステップを繰り返します。

スピンダウンし、チューブをマグネットの上に戻します。残ったエタノールをピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。

For each sample, remove the tube from the magnetic rack and resuspend the pellet in 10 µl nuclease-free water. Incubate for 2 minutes at room temperature.

溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。

For each sample, remove and retain 10 µl of eluate into a separate clean 1.5 ml Eppendorf DNA LoBind tube.

Note: Ensure your samples are processed separately. At this stage they are not yet barcoded.

CHECKPOINT

Quantify 1 µl of each eluted sample using a Qubit fluorometer.

Note: You should expect to recover approximately 75% of your input mass. For example, from 6 ng of cfDNA, a yield of approximately 4.5 ng is expected.

最終ステップ

Take forward the repaired and end-prepped cfDNA into the native barcode ligation step. However, at this point it is also possible to store the sample at 4°C overnight.

5. Native barcode ligation

材料
  • Native Barcodes (NB01-24)
  • AMPure XP Beads (AXP)
  • EDTA (EDTA)

消耗品
  • NEB Blunt/TA Ligase Master Mix (NEB, M0367)
  • ヌクレアーゼフリー水で用事調整した 80% エタノール溶液
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
  • OR 0.2 ml thin-walled PCR tubes
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • Qubit dsDNA HS Assay Kit (ThermoFisher, cat # Q32851)

装置
  • マグネットラック
  • ボルテックスミキサー
  • Hula mixer(緩やかに回転するミキサー)
  • Microfuge
  • サーマルサイクラー
  • アイスバケツ(氷入り)
  • Multichannel pipette and tips
  • P1000 ピペット及びチップ
  • P200 pipette and tips
  • P100 ピペットとチップ
  • P20 pipette and tips
  • P10 ピペットとチップ
  • P2 pipette and tips
  • Qubit蛍光光度計(またはQCチェックのための同等品)

Prepare the NEB Blunt/TA Ligase Master Mix according to the manufacturer's instructions, and place on ice:

  1. Thaw the reagents at room temperature.

  2. Spin down the reagent tubes for 5 seconds.

  3. Ensure the reagents are fully mixed by performing 10 full volume pipette mixes.

Thaw the EDTA at room temperature and mix by vortexing. Then spin down and place on ice.

Thaw the Native Barcodes (NB01-24) at room temperature. Briefly spin down, individually mix the barcodes required for your number of samples by pipetting, and place them on ice.

重要

Sample inputs should be normalised so the same mass of sample is used in each reaction.

Use the Qubit quantification results from the end of the "DNA repair and end-prep" stage of this protocol to ensure you are taking forward an equivalent mass for each sample.

Normalise and prepare your end-prepped cfDNA samples in nuclease-free water:

Inputs should be normalised so the same mass of sample is used in each reaction.

  1. For each sample, take forward an equivalent mass of sample into a separate clean 0.2 ml thin-walled PCR tube.
    Note: To take forward the maximum amount of DNA possible, we recommend taking the full volume of your lowest concentration sample and normalising the other samples to to this.

  2. Adjust the volume of each sample to 7.5 μl with nuclease-free water.

  3. Mix thoroughly by pipetting up and down, or by flicking the tube(s).

  4. Spin down briefly in a microfuge.

Select a unique barcode for each sample to be run together on the same flow cell. 12 samples should be barcoded and combined in one experiment.

Please note: Only use one barcode per sample.

In the 0.2 ml PCR-tubes containing your normalised sample inputs, add the reagents in the following order for each sample:

Reagent Volume
End-prepped DNA 7.5 µl
Native Barcode (NB01-24) 2.5 µl
Blunt/TA Ligase Master Mix 10 µl
Total 20 µl

反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。

Incubate for 20 minutes at room temperature.

Add the following volume of EDTA to each well and mix thoroughly by pipetting and spin down briefly.

Note: Ensure you follow the instructions for the cap colour of your EDTA tube.

EDTA cap colour Volume per well
For clear cap EDTA 2 µl
For blue cap EDTA 4 µl
ヒント

EDTA is added at this step to stop the reaction.

Pool all the barcoded samples in a 1.5 ml Eppendorf DNA LoBind tube.

Note: Ensure you follow the instructions for the cap colour of your EDTA tube.

. For 12 samples
Total volume for preps using clear cap EDTA 264 µl
Total volume for preps using blue cap EDTA 288 µl
ヒント

We recommend checking the base of your tubes/plate are all the same volume before pooling and after to ensure all the liquid has been taken forward.

Resuspend the AMPure XP Beads (AXP) by vortexing.

Add 1.2X AMPure XP Beads (AXP) to the pooled reaction, and mix by pipetting.

Note: Ensure you follow the instructions for the cap colour of your EDTA tube.

. For 12 samples
Volume of AXP for preps using clear cap EDTA 317 µl
Volume of AXP for preps using blue cap EDTA 346 µl

Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.

Prepare 2 ml of fresh 80% ethanol in nuclease-free water.

Spin down the sample and pellet on a magnet for 5 minutes. Keep the tube on the magnetic rack until the eluate is clear and colourless, and pipette off the supernatant.

Keep the tube on the magnetic rack and wash the beads with 700 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.

前のステップを繰り返します。

Spin down and place the tube back on the magnetic rack. Pipette off any residual ethanol. Allow the pellet to dry for ~30 seconds, but do not dry the pellet to the point of cracking.

Remove the tube from the magnetic rack and resuspend the pellet in 32 µl nuclease-free water by gently flicking.

Incubate for 10 minutes at 37°C. Every 2 minutes, agitate the sample by gently flicking for 10 seconds to encourage DNA elution.

Pellet the beads on a magnetic rack until the eluate is clear and colourless.

Remove and retain 32 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

CHECKPOINT

Quantify 1 µl of eluted sample using a Qubit fluorometer.

Note: You should expect to recover between 40–60 % of the input DNA mass. For example, if starting with 6 ng per sample and using 12x barcodes (72 ng total), a yield of approximately 30–40 ng, is expected.

最終ステップ

Take forward the barcoded DNA library to the adapter ligation and clean-up step. However, you may store the sample at 4°C overnight.

6. Adapter ligation and clean-up

材料
  • Short Fragment Buffer (SFB)
  • Elution Buffer (EB)
  • Native Adapter (NA)
  • AMPure XP Beads (AXP)

消耗品
  • NEBNext® Quick Ligation Module (NEB, E6056)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • Qubit dsDNA HS Assay Kit (ThermoFisher, cat # Q32851)

装置
  • 小型遠心機
  • マグネットラック
  • ボルテックスミキサー
  • Hula mixer(緩やかに回転するミキサー)
  • サーマルサイクラー
  • P1000 ピペット及びチップ
  • P200 ピペットとチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
  • Ice bucket with ice
  • Qubit蛍光光度計(またはQCチェックのための同等品)
重要

The Native Adapter (NA) used in this kit and protocol is not interchangeable with other sequencing adapters.

Prepare the NEBNext Quick Ligation Reaction Module according to the manufacturer's instructions, and place on ice:

  1. Thaw the reagents at room temperature.

  2. Spin down the reagent tubes for 5 seconds.

  3. Ensure the reagents are fully mixed by performing 10 full volume pipette mixes. Note: Do NOT vortex the Quick T4 DNA Ligase.

The NEBNext Quick Ligation Reaction Buffer (5x) may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for several seconds to ensure the reagent is thoroughly mixed.

重要

Do not vortex the Quick T4 DNA Ligase.

Spin down the Native Adapter (NA) and Quick T4 DNA Ligase, pipette mix and place on ice.

Thaw the Elution Buffer (EB) at room temperature and mix by vortexing. Then spin down and place on ice.

Thaw the Short Fragment Buffer (SFB) at room temperature and mix by vortexing. Then spin down and place on ice.

In a 1.5 ml Eppendorf LoBind tube, mix in the following order:

Between each addition, pipette mix 10 - 20 times.

Reagent Volume
Pooled barcoded sample 30 µl
Native Adapter (NA) 5 µl
NEBNext Quick Ligation Reaction Buffer (5X) 10 µl
Quick T4 DNA Ligase 5 µl
Total 50 µl

反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。

Incubate the reaction for 20 minutes at room temperature.

重要

The next clean-up step uses Short Fragment Buffer (SFB) rather than 80% ethanol to wash the beads. The use of ethanol will be detrimental to the sequencing reaction.

Resuspend the AMPure XP Beads (AXP) by vortexing.

Add 60 µl (1.2x) of resuspended AMPure XP Beads (AXP) to the reaction and mix by pipetting.

Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.

Spin down the sample and pellet on the magnetic rack. Keep the tube on the magnet and pipette off the supernatant.

Wash the beads by adding 250 μl of Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.

Note: Take care when removing the supernatant, the viscosity of the buffer can contribute to loss of beads from the pellet.

前のステップを繰り返します。

スピンダウンし、チューブをマグネットの上に戻します。残った上清をピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。

Remove the tube from the magnetic rack and resuspend the pellet in 33 µl of Elution Buffer (EB).

Spin down and incubate for 10 minutes at 37°C. Every 2 minutes, agitate the sample by gently flicking for 10 seconds to encourage DNA elution.

溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。

Remove and retain 33 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

CHECKPOINT

Quantify 1 µl of eluted sample using a Qubit fluorometer.

Note: You should expect to recover approximately 20% of input mass. For example, if starting with 6 ng per sample and using 12x barcodes (72 ng total), a yield of approximately 15 ng is expected.

最終ステップ

調製されたライブラリーは、フローセルへのロードに使用されます。ライブラリーは、ロードの準備ができるまで氷上、または4℃で保存して下さい。

ヒント

推奨のライブラリー保存方法

短期間の保存や繰り返し使用する場合は__(例 フローセルをウオッシュして再度ロードする場合)は、ライブラリーをEppendorf DNA LoBindチューブに入れ、__4℃で保存 することをお勧めします。 __3か月以上の長期保存の場合は、____ライブラリーをEppendorf DNA LoBindチューブに -80 ° Cで保存 することをお勧めします。

7. Priming and loading the PromethION Flow Cell

材料
  • Sequencing Buffer (SB)
  • Library Beads (LIB)
  • Flow Cell Tether (FCT)
  • Flow Cell Flush (FCF)

消耗品
  • PromethION Flow Cell
  • 1.5 ml Eppendorf DNA LoBind tubes

装置
  • PromethION 2 Solo device
  • PromethION sequencing device
  • PromethION Flow Cell Light Shield
  • P1000 pipette and tips
  • P200 pipette and tips
  • P20 pipette and tips
重要

This method is only compatible with R10.4.1 flow cells (FLO-PRO114M).

Thaw the Sequencing Buffer (SB), Library Beads (LIB), Flow Cell Tether (FCT) and Flow Cell Flush (FCF) at room temperature before mixing by vortexing. Then spin down and store on ice.

フローセルプライミングミックスを調製するには、フローセルテザー(FCT)とフローセルフラッシュ(FCF)を以下の指示通りに混合してください。その後に、室温でボルテックスして混合してください。

注) 現在、使い捨てチューブを使用したキットをボトル型にフォーマット変更中です。ご使用のキットのフォーマットに従ってください。

シングルユースチューブの場合: 30μlのFlow Cell Tether(FCT)をFlow Cell Flush(FCF)チューブに直接加えてください。

ボトルフォーマットの場合: フローセルの数に適したチューブに、以下の試薬を入れてくださいs:

試薬 フローセルあたりの容量
Flow Cell Flush (FCF) 1,170 µl
Flow Cell Tether (FCT) 30 µl
合計 1,200 µl
重要

冷蔵庫からフローセルを取り出した後にフローセルが室温に戻るまで20分待ってからPromethIONに差し込んでください。湿度の高い環境ではフローセルに結露が生じることがあります。フローセルの上面と下面にある金色のコネクターピンに結露がないかを点検し、結露が確認された場合はリントフリーのウェットティッシュで拭き取ってください。フローセル下面にヒートパッド(黒いパッド)があることを確認してください。

PromethION 2 Soloの場合、フローセルは以下のようにセットします

  1. フローセルを金属プレートの上に平らに置きます。

  2. フローセルを、金色のピンまたは緑色の基板が見えなくなるまでドッキングポートにスライドさせます。

J2068 FC-into-P2-animation V5

PromethION 24/48 の場合は、フローセルをドッキングポートにセットします

  1. フローセルとコネクターを水平および垂直に並べてから、所定の位置にスムーズに挿入してください。
  2. フローセルをしっかりと押し下げ、ラッチがかみ合い、カチッと音がして所定の位置に収まることを確認します。

Step 1a V3

Step 1B

重要

フローセルを誤った角度で挿入すると、PromethIONのピンが損傷し、シーケンス結果に影響を及ぼす可能性があります。PromethIONのピンが損傷している場合は、support@nanoporetech.com までご連絡ください。

Screenshot 2021-04-08 at 12.08.37

インレットポートカバーを時計回りにスライドさせて開きます。

Prom loading 2

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

インレットポートを開けた後、少量ずつ引き戻して気泡を取り除きます:

  1. P1000ピペットチップを200µlにセットします。
  2. チップをインレットポートに挿入します。
  3. ダイヤルが220~230µlを示すまで、またはピペットチップに少量のバッファ ーが入るのが確認できるまで、ホイールを回します。

Step 3 v1

気泡が入らないように、500 µl のプライミングミックスをインレットポートからフローセルに注入し、5分間待ちます。この間に、プロトコールの次のステップでライブラリーをロードする準備をしてください。

Step 4 v1

Library Beads(LIB)の液をピペッティングすることで十分に混合して下さい。

重要

Library Beads(LIB)チューブにはビーズの懸濁液が入っています。これらのビーズはすぐに沈殿するので、使用直前に混合することが重要です。

ほとんどのシーケンス実験にはLibrary Beads (LIB)の使用を推奨します。しかし、より粘性の高いライブラリーにはLibrary Solution(LIS)を使ってください。

In a new 1.5 ml Eppendorf DNA LoBind tube, prepare the library for loading as follows:

Reagent Volume per flow cell
Sequencing Buffer (SB) 100 µl
Library Beads (LIB) thoroughly mixed before use 68 µl
DNA library 32 µl
Total 200 µl

Note: The prepared library is used for loading into the flow cell. Store the library on ice or at 4°C until ready to load.

500μlのプライミングミックスをインレットポートにゆっくりと注入し、フローセルのプライミングを完了します。

Step 5 v1

調製したライブラリーは、ロードする直前にピペッティング混合して下さい。

P1000ピペットを使用して、インレットポートに200µlのライブラリーを注入します。

Step 6 v1

インレットポートを密閉するためにバルブを閉じます。

Step 7 V2

重要

最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。

ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。

ライトシールドがフローセルから取り外されている場合は、以下のようにライトシールドを取り付けます

  1. ライトシールドとインレットポートをフローセルのインレットポートカバーに合わせます。ライトシールドの前縁をフローセルIDの上に位置するようにします。
  2. ライトシールドをインレットポートカバーの周囲にしっかりと押し付けます。インレットポートクリップがインレットポートカバーの下にカチッとはまるようになっています。

J2264 - Light shield animation PromethION Flow Cell 8a FAW

J2264 - Light shield animation PromethION Flow Cell 8b FAW

最終ステップ

MinKNOWでシーケンスランを開始する準備ができたら、PromethIONの蓋を閉めてください。

フローセルをPromethIONにロードした後、実験を開始する前に最低10分間待ちます。この待ち時間があることで、よりシーケンス出力が向上します。

8. Data acquisition and basecalling

重要

Ensure you are using the most recent version of MinKNOW.

We recommend updating MinKNOW to the latest version prior to starting a sequencing run for the best sequencing results.

For more information on updating MinKNOW, please refer to our MinKNOW protocol.

How to start sequencing

Once you have loaded your flow cell, the sequencing run can be started on MinKNOW, our sequencing software that controls the device, data acquisition and real-time basecalling.

Please ensure MinKNOW is installed on your computer or device. Further instructions for setting up a sequencing run can be found in the MinKNOW protocol.

Please ensure when setting up a sequencing run you are using the recommendations outlined below. All other parameters can be left to their default settings.

MinKNOW can be used and set up to sequence in multiple ways:

  • On a computer either direcly or remotely connected to a sequencing device.
  • Directly on a PromethION 24/48 sequencing device.

For more information on using MinKNOW on a sequencing device, please see the device user manuals:

Open the MinKNOW software using the desktop shortcut and log into the MinKNOW software using your Community credentials.

Click on your connected device.

prom 48

Set up a sequencing run by clicking Start sequencing.

Edit 1

Type in the experiment name, select the flow cell postition and enter sample ID. Choose FLO-PRO114M flow cell type from the drop-down menu.

Click Continue to kit selection.

Flow cell selection

Select the Native Barcoding Sequencing Kit 24 V14 (SQK-NBD114.24).

An expansion kit does not need to be selected.

Click Continue to Run Options to continue.

Kit selection NBD114 24 cfDNA Multiplex

Set the run options to a 72 hour run length and 20 bp minimum read length.

Click Continue to basecalling to continue.

Set the run options to a 72 hour run length and 20 bp minimum read length cfDNA multiplex

Set up basecalling using the following parameters:

  1. Ensure the basecalling is switched ON.
  2. Next to "Models", click Edit options and choose High accuracy basecaller (HAC) from the drop-down menu.
  3. Ensure barcoding is ON.

Click Continue to output and continue.

Set up basecalling using the following parameters multiplex

Keep the output format and filtering options to their default settings.

Click Continue to final review to continue.

Keep the output format and filtering options to their default settings multiplex

Click Start to start sequencing.

You will be automatically navigated to the Sequencing Overview page to monitor the sequencing run.

Click Start to start sequencing multiplex

Data analysis after sequencing

After sequencing has completed on MinKNOW, the flow cell can be reused or returned, as outlined in the Flow cell reuse and returns section.

After sequencing and basecalling, the data can be analysed, as outlined in the Downstream analysis section.

9. Downstream analysis

Bioinformatics analysis

If basecalling is not performed during live sequencing, raw sequencing data (.POD5 format) can be processed post-sequencing.

This can be achieved using the tool Dorado, which enables basecalling and subsequent alignment to a reference genome.

Dorado can also detect modified bases by using the modified-bases option (e.g. --modified-bases 5mCG_5hmCG). This will integrate methylation tags directly into the aligned BAM file. We also recommend applying a minimum QScore cutoff (--min-Qscore <min_QScore>), which serves as a quality control measure to ensure only high-quality reads are used in downstream processes.


1. The command below demonstrates how to initiate basecalling with Dorado, followed by sorting, and indexing the output using Samtools. Please see the Dorado documentation here for further details.

Dorado basecaller <model> <input_POD5> --reference <REF> --min-qscore <min_QScore> 
| samtools sort -o <OUTPUT_BAM> - && samtools index <OUTPUT_BAM> 

For example to SUP basecall with 5mCG and 5hmCG detected in CpG context, and with a QScore filter of 10 we can use:

Dorado basecaller sup --modified-bases 5mCG_5hmCG input.pod5 --reference ref.fasta --min-qscore 10 
| samtools sort -o output.bam > - && samtools index output.bam 

2. It is also recommended to remove reads that have a poor alignment score i.e. 10. This can be achieved as follows:

samtools view -q <min_map_q> -bh -o <OUTPUT_BAM> <INPUT_BAM> && samtools index -@ <threads> <OUTPUT_BAM> 

3. The output from Dorado basecaller can be demultiplexed into per-barcode BAMs using Dorado demux. E.g.

Dorado demux --output-dir <output-dir> --no-classify <input-bam> 

4. You may optionally omit methylation information from read ends using modkit adjust-mods or modkit tools with --edge-filter option. This may help increase methylation call precision, as the very end of reads, approximately 27 bases, may suffer from loss in methylated bases due to the chemistry used to repair ends in library preparation (see our know-how document for further details).

modkit adjust-mods --edge-filter 0 27 <IN_BAM> <OUTPUT_BAM> 

The modified .bam file can be used with external tools that use a .bam file as input for further data analysis and exploration.

Post-basecalling analysis

There are several options for further analysing your basecalled data:

1. EPI2ME workflows

For in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials and workflows available in EPI2ME. The platform provides a vehicle where workflows deposited in GitHub by our Research and Applications teams can be showcased with descriptive texts, functional bioinformatics code and example data.

2. Research analysis tools

Oxford Nanopore Technologies' Research division has created a number of analysis tools, which are available in the Oxford Nanopore GitHub repository. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.

3. Community-developed analysis tools

If a data analysis method for your research question is not provided in any of the resources above, please refer to the resource centre and search for bioinformatics tools for your application. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.

10. フローセルの再利用と返却

材料
  • Flow Cell Wash Kit (EXP-WSH004)

シークエンス実験終了後、フローセルを再利用する場合は、Flow Cell Wash Kitのプロトコールに従い、洗浄したフローセルを2~8℃で保管してください。

Flow Cell Wash Kit protocolは、Nanoporeコミュニティーで入手できます。

ヒント

運転を停止したらできるだけ早くフローセルをウォッシュすることをお勧めします。しかし、これが不可能な場合はフローセルをデバイスに入れたまま、翌日にウォッシュをして下さい。

または、返送手順に従って、オックスフォード・ナノポアに返送してください。

フローセルの返却方法は hereをご覧ください。

(注: 製品を返却する前に、すべてのフローセルを脱イオン水で洗浄する必要があります。

重要

シークエンシング実験に関して問題が発生した場合や質問がある場合には、このプロトコルのオンライン版にあるトラブルシューティングガイドを参照してください。

11. DNA/RNA抽出、およびライブラリ調製時の問題点

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

サンプルの品質が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) DNA抽出で必要な純度が得られていない 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。.

追加のSPRIクリーンアップステップの実施を検討して下さい。
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。
RNAのフラグメントが予想より短い 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。

RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。

AMPureビーズクリーンアップ後のDNA回収率が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
低回収率 AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。

2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。
低回収率 DNA断片が予想よりも短い サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 SPRI cleanup
エンドプレップ後の収率が低い 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。

12. シークエンス実行中の問題

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

シークエンス開始時のポアがフローセルチェック後よりも少ない場合

問題点 予想される原因 解決策とコメント
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ナノポアアレイに気泡が入ってしまった。 フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 フローセルがデバイスに正しく挿入されていない。 シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。

MinKNOWのスクリプトに問題

問題点 この問題が生じた可能性のある原因 解決策とコメント
MinKNOW に 「Script failed」と表示されている"
コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。

ポア占有率が40%未満

問題点 予想される原因 解決策とコメント
ポアの占有率が40%以下 フローセルに十分なライブラリーがロードされていなかった。 シークエンシングライブラリーを正確に濃度測定し、適切な容量がフローセルにロードされていることを確認してください(詳しくはそれぞれのプロトコールをご覧ください)。 ロードする前にライブラリーを定量し、 Promega Biomath Calculatorなどのツールを使用してfmolを計算してください。[dsDNA: µ g to fmol]を選択してください。
ポア占有率が0に近い Ligation Sequencing Kitを使用したが、シークエンシングアダプターはDNAにライゲーションしなかった。 シークエンシングアダプターのライゲーションステップでは、必ずNEBNext Quick Ligation Module(E6056)とOxford Nanopore Technologies Ligation Buffer(LNB、シークエンスキットに付属されています。)を使用し、各試薬の量を適切に使用してください。サードパーティ試薬の完全性をテストするために、Lambdaのコントロールライブラリーを調製することもできます。
ポア占有率が0に近い シークエンシングアダプターライゲーション後の洗浄工程で、LFBまたはSFBの代わりにエタノールを使用してしまった。 エタノールはシークエンシングアダプター上のモータータンパク質を変性させる可能性があります。シークエンシングアダプターのライゲーション後にLFBまたはSFBバッファーを使用したことを確認して下さい。
ポア占有率が0に近い フローセルにテザーがない テザーはフローセルのプライミング時に追加されます(キット9、10、11はFLTチューブ、キット14はFTUを使用。ウルトラロングのDNAキットにはFTUを使用。) プライミングの前に、FLT/FCT/FTUがバッファー(キット9、10、11はFB、キット14はFCF)に添加されていることを確認してください。

予想より短いリード長

問題点 予想される原因 解決策とコメント
予想より短いリード長 DNAサンプルの不要な断片化 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。

1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。

2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 DNA gel2 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。

3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。

利用できないポアの割合が多い場合

問題点 予想される原因 解決策とコメント
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています)

image2022-3-25 10-43-25 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。
サンプル内に不純物が含まれている 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合:

1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は
2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。

Inactiveのポアの割合が高い

問題点 予想される原因 解決策とコメント
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 気泡がフローセルに混入した。 フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。
利用できないポアの割合が多い場合 サンプルDNAに含まれる不純物 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。

1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。
2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。
3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。
利用できないポアの割合が多い場合 サンプル内に不純物が含まれている 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。

温度変動

問題点 予想される原因 解決策とコメント
温度変動 フローセルとデバイスの接続が途切れている。 フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。

目標温度に到達しない場合

問題点 予想される原因 解決策とコメント
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。

Last updated: 11/15/2024

Document options

PromethION