Pan-genomic matching statistics for targeted nanopore sequencing

Nanopore sequencing is an increasingly powerful tool for genomics. Recently, computational advances have allowed nanopores to sequence in a targeted fashion; as the sequencer emits data, software can analyze the data in real time and signal the sequencer to eject “non-target” DNA molecules. We present a novel method called SPUMONI, which enables rapid and accurate targeted sequencing with the help of efficient pangenome indexes.

SPUMONI uses a compressed index to rapidly generate exact or approximate matching statistics (half-maximal exact matches) in a streaming fashion. When used to target a specific strain in a mock community, SPUMONI has similar accuracy as minimap2 when both are run against an index containing many strains per species. However SPUMONI is 12 times faster than minimap2. SPUMONI’s index and peak memory footprint are also 15 to 4 times smaller than minimap2, respectively.

These improvements become even more pronounced with even larger reference databases; SPUMONI’s index size scales sublinearly with the number of reference genomes included. This could enable accurate targeted sequencing even in the case where the targeted strains have not necessarily been sequenced or assembled previously. SPUMONI is open source software available from https://github.com/oma219/spumoni.

Authors: Omar Ahmed, Massimiliano Rossi, Sam Kovaka, Michael C. Schatz, Travis Gagie, Christina Boucher, Ben Langmead