Products & Services
Applications

Applications

Nanopore sequencing offers advantages in all areas of research. Our offering includes DNA sequencing, as well as RNA and gene expression analysis and future technology for analysing proteins.

Learn about applications
View all Applications
Resources
News Explore
Contact
Resource Centre
Back

Long-read sequencing reveals the splicing profile of the calcium channel gene CACNA1C in human brain

Publication

Date: 5th February 2018 | Source: BioRxiv

Authors: Michael Clark, Tomasz Wrzesinski, Aintzane Garcia-Bea, Joel Kleinman, Thomas Hyde, Daniel Weinberger, Wilfried Haerty, Elizabeth Tunbridge.

RNA splicing is a key mechanism linking genetic variation and complex diseases, including schizophrenia. Splicing profiles are particularly diverse in the brain, but it is difficult to accurately identify and quantify full-length isoforms using standard approaches. CACNA1C is a large gene that shows robust genetic associations with several psychiatric disorders and encodes multiple, functionally-distinct voltage-gated calcium channels via alternative splicing. We combined long-range PCR with nanopore sequencing to characterise the full-length coding sequences of the CACNA1C gene in human brain. We show that its splice isoform profile varies between brain regions and is substantially more complex than currently appreciated: we identified 38 novel exons and 83 high confidence novel isoforms, many of which are predicted to alter protein function. Our findings demonstrate the capability of long-read amplicon sequencing to effectively characterise human splice isoform diversity, while the accurate characterisation of CACNA1C isoforms will facilitate the identification of disease-linked isoforms.
Read the full text

Recommended for you

Open a chat to talk to our sales team
FAQs

FAQs

Search