Main menu

Long-read sequencing reveals the splicing profile of the calcium channel gene CACNA1C in human brain

  • Published on: February 5 2018
  • Source: BioRxiv

RNA splicing is a key mechanism linking genetic variation and complex diseases, including schizophrenia. Splicing profiles are particularly diverse in the brain, but it is difficult to accurately identify and quantify full-length isoforms using standard approaches. CACNA1C is a large gene that shows robust genetic associations with several psychiatric disorders and encodes multiple, functionally-distinct voltage-gated calcium channels via alternative splicing. We combined long-range PCR with nanopore sequencing to characterise the full-length coding sequences of the CACNA1C gene in human brain. We show that its splice isoform profile varies between brain regions and is substantially more complex than currently appreciated: we identified 38 novel exons and 83 high confidence novel isoforms, many of which are predicted to alter protein function. Our findings demonstrate the capability of long-read amplicon sequencing to effectively characterise human splice isoform diversity, while the accurate characterisation of CACNA1C isoforms will facilitate the identification of disease-linked isoforms.

Authors: Michael Clark, Tomasz Wrzesinski, Aintzane Garcia-Bea, Joel Kleinman, Thomas Hyde, Daniel Weinberger, Wilfried Haerty, Elizabeth Tunbridge

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

お問い合わせ

Intellectual property Cookie policy Corporate reporting Privacy policy Terms, conditions and policies Accessibility

Oxford Nanoporeについて

Contact us 経営陣 メディアリソース & お問い合わせ先 投資家向け Oxford Nanopore社で働く BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag