Resources Get started
Resource Centre

High-fidelity nanopore sequencing of ultra-short DNA targets


Date: 30th April 2019 | Source: Analytical Chemistry

Authors: Brandon D Wilson, Michael Eisenstein, Hyongsok Tom Soh.

Nanopore sequencing offers a portable and affordable alternative to sequencing-by-synthesis methods but suffers from lower accuracy and cannot sequence ultra-short DNA. This puts applications such as molecular diagnostics based on the analysis of cell-free DNA or single-nucleotide variants (SNV) out of reach. To overcome these limitations, we report a nanopore-based sequencing strategy in which short target sequences are first circularized and then amplified via rolling-circle amplification to produce long stretches of concatemeric repeats. These can be sequenced on the MinION platform from Oxford Nanopore Technologies (ONT), and the resulting repeat sequences aligned to produce a highly-accurate consensus that reduces the high error-rate present in the individual repeats. Using this approach, we demonstrate for the first time the ability to obtain unbiased and accurate nanopore data for target DNA sequences of < 100 bp. Critically, this approach is sensitive enough to achieve SNV discrimination in mixtures of sequences and even enables quantitative detection of specific variants present at ratios of < 10%. Our method is simple, cost-effective, and only requires well-established processes. It therefore expands the utility of nanopore sequencing for molecular diagnostics and other applications, especially in resource-limited settings.

Read the full text Short to long: the longest nanopore read to date

Recommended for you

Open a chat to talk to our sales team