cDNA-PCR Sequencing V14 - Barcoding (SQK-PCB114.24)
- Home
- Documentation
- cDNA-PCR Sequencing V14 - Barcoding (SQK-PCB114.24)
PromethION: Protocol
cDNA-PCR Sequencing V14 - Barcoding (SQK-PCB114.24) V PCB_9201_v114_revE_11Dec2024
The fastest and simplest protocol for full-length cDNA sequencing
- Offering highest yield
- Higher yields than traditional cDNA synthesis
- Splice variants and fusion transcripts
- Multiplex up to 24 different samples
- Compatible with R10.4.1 flow cells only
For Research Use Only
This is an Early Access product For more information about our Early Access programmes, please see this article on product release phases.
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 3. Reverse transcription and strand-switching
- 4. Selecting for full-length transcripts by PCR
- 5. Adapter addition
- 6. Priming and loading the PromethION flow cell
Sequencing and data analysis
Troubleshooting
概要
The fastest and simplest protocol for full-length cDNA sequencing
- Offering highest yield
- Higher yields than traditional cDNA synthesis
- Splice variants and fusion transcripts
- Multiplex up to 24 different samples
- Compatible with R10.4.1 flow cells only
For Research Use Only
This is an Early Access product For more information about our Early Access programmes, please see this article on product release phases.
1. Overview of the protocol
重要
This is an Early Access product
For more information about our Early Access programmes, please see this article on product release phases.
Please ensure you always use the most recent version of the protocol.
Introduction to the cDNA-PCR Barcoding Kit 24 V14 protocol
This protocol describes how to carry out sequencing of multiple cDNA samples using a strand-switching method and the cDNA-PCR Barcoding Kit 24 V14 (SQK-PCB114.24). There are 24 unique barcodes available, allowing the user to pool up to 24 different samples in one sequencing experiment. During the strand-switching step, a UMI is incorporated, before the double-stranded cDNA is amplified by PCR using primers containing 5' tags. The amplified and barcoded samples are then pooled together and the Rapid Sequencing Adapters are added to the pooled mix.
A control experiment can be completed first using RNA Control Sample (RCS) from the RNA Control Expansion (EXP-RCS001) as your input to troubleshoot your library preparation or to become familiar with the protocol.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Extract your RNA, and check its length, quantity and purity using the Input DNA/RNA QC protocol. The quality checks performed during the protocol are essential in ensuring experimental success
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Library preparation
The table below is an overview of the steps required in the library preparation, including timings and stopping points.
Library preparation step | Process | Time | Stop option |
---|---|---|---|
Reverse transcription and strand-switching | Prepare full-length cDNA from Poly(A)+ RNA (or total RNA) with the incorporation of the UMI | 170 minutes | -20°C overnight |
Selecting for full-length transcripts by PCR | Amplify the cDNA by PCR using rapid attachment barcode primers during the PCR step | 40 minutes | 4°C short-term storage or for repeated use, such as re-loading your flow cell. -80°C for single-use long-term storage. |
Adapter ligation | Attach the sequencing adapters to the to the PCR products. | 5 minutes | We strongly recommend sequencing your library as soon as it is adapted. |
Priming and loading the flow cell | Prime the flow cell and load the prepared cDNA library for sequencing | 5 minutes |
Sequencing and analysis
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Optional: Start the EPI2ME software and select a workflow for further analysis
重要
Compatibilities of the protocol
This protocol should only be used in combination with:
- cDNA-PCR Barcoding Kit 24 V14 (SQK-PCB114.24)
- R10.4.1 flow cells (FLO-PRO114M)
- Flow Cell Wash Kit (EXP-WSH004)
- RNA Control Expansion (EXP-RCS001)
- Rapid Adapter Auxiliary V14 (EXP-RAA114)
- Sequencing Auxiliary Vials V14 (EXP-AUX003)
- Flow Cell Priming Kit V14 (EXP-FLP004)
- PromethION 24/48 - PromethION IT requirements
- PromethION 2 Solo - PromethION 2 Solo IT requirements
2. Equipment and consumables
材料
- 10 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 500 ng total RNA per sample
- cDNA-PCR Barcoding Kit 24 V14 (SQK-PCB114.24)
消耗品
- PromethION Flow Cell
- NEBNext® Quick Ligation Reaction Buffer (NEB, B6058)
- T4 DNA Ligase 2M U/ml (NEB, M0202M)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
- Lambda Exonuclease (NEB, Cat # M0262L)
- Thermolabile Exonuclease I (NEB, M0568)
- USER (Uracil-Specific Excision Reagent) Enzyme (NEB, cat # M5505L)
- 10 mM dNTP solution (e.g. NEB N0447)
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0752)
- LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
- Agencourt RNAClean XP beads (Beckman Coulter™, cat # A63987)
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
- Qubit RNA HS Assay Kit (ThermoFisher, cat # Q32852)
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Freshly prepared 70% ethanol in nuclease-free water
- 1.5 ml Eppendorf DNA LoBind tubes
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- 0.2 ml thin-walled PCR tubes
装置
- PromethION device
- PromethION Flow Cell Light Shield
- Hula mixer(緩やかに回転するミキサー)
- 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
- 小型遠心機
- ボルテックスミキサー
- Thermal cycler
- Qubit蛍光光度計(またはQCチェックのための同等品)
- Agilent Bioanalyzer (or equivalent)
- P1000 ピペット及びチップ
- P200 ピペットとチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- P2 ピペットとチップ
- アイスバケツ(氷入り)
- タイマー
For this protocol, you will need 10 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 500 ng total RNA per sample.
サードパーティー試薬
このプロトコールで使用されているすべてのサードパーティー試薬は、当社が検証し、使用を推奨しているものです。Oxford Nanopore Technologiesでは、それ以外の試薬を用いたテストは行っていません。
すべてのサードパーティ製試薬については、製造元の指示に従って使用の準備をすることをお勧めします。
フローセルのチェックをしてください
シークエンシング実験を開始する前に、フローセルのポアの数を確認することを強くお勧めします。このフローセルの確認は、MinION/GridION/PromethIONの場合は代理店への到着から12週間以内に行ってください。またはFlongle Flow Cellの場合は代理店への到着から4週間以内に行う必要があります。Oxford Nanopore Technologiesは、フローセルチェックの実施から2日以内に結果が報告され、推奨される保管方法に従っていた場合に、以下の表に記載されているナノポアの有効数に満たさない場合には、フローセルを交換します。 フローセルのチェックを行うには、Flow Cell Check documentの指示に従ってください。
Flow cell | 保証する最小有効ポア数(以下の数未満のフローセルが交換対象となります) |
---|---|
Flongle Flow Cell | 50 |
MinION/GridION Flow Cell | 800 |
PromethION Flow Cell | 5000 |
cDNA-PCR Barcoding Kit 24 V14 (SQK-PCB114.24) contents
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Strand Switching Primer II | SSPII | Violet | 1 | 350 |
RT Primer | RTP | Yellow | 1 | 200 |
cDNA RT Adapter | CRTA | Amber | 1 | 200 |
Annealing Buffer | AB | Orange | 1 | 200 |
Rapid Adapter | RA | Green | 1 | 15 |
Adapter Buffer | ADB | Clear | 1 | 100 |
Elution Buffer | EB | Black | 2 | 500 |
Short Fragment Buffer | SFB | Clear | 4 | 7,500 |
Sequencing Buffer | SB | Red | 1 | 700 |
Library Beads | LIB | Pink | 1 | 600 |
Library Solution | LIS | White cap, pink label | 1 | 600 |
Barcode Primers 1-24 | BP01-24 | White | 24 | 10 |
Flow Cell Tether | FCT | Purple | 1 | 200 |
Flow Cell Flush | FCF | Clear cap, light blue label | 1 | 8,000 |
3. Reverse transcription and strand-switching
材料
- 10 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 500 ng total RNA per sample
- cDNA RT Adapter (CRTA)
- Annealing Buffer (AB)
- Short Fragment Buffer (SFB)
- RT Primer (RTP)
- Strand Switching Primer II (SSPII)
消耗品
- NEBNext® Quick Ligation Reaction Buffer (NEB, B6058)
- T4 DNA Ligase 2M U/ml (NEB, M0202M)
- Lambda Exonuclease (NEB, Cat # M0262L)
- USER (Uracil-Specific Excision Reagent) Enzyme (NEB, cat # M5505L)
- Agencourt RNAClean XP beads (Beckman Coulter™, cat # A63987)
- 10 mM dNTP solution (e.g. NEB cat # N0447)
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0752)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
- Qubit RNA HS Assay Kit (ThermoFisher, cat # Q32852)
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- 1.5 ml Eppendorf DNA LoBind tubes
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- 0.2 ml thin-walled PCR tubes
装置
- 小型遠心機
- Thermal cycler
- Qubit蛍光光度計(またはQCチェックのための同等品)
- P1000 ピペット及びチップ
- P200 ピペットとチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- P2 ピペットとチップ
CHECKPOINT
フローセルのチェックを行ってください。
ライブラリー調製を開始する前にフローセルチェックを行い、良好なシークエンスランに十分なポアを持つフローセルを使用することをお勧めします。
詳細については、MinKNOWプロトコルのflow cell check instructions を参照してください。
ヒント
Preparing the laboratory for handling RNA samples:
For optimal results, we recommend preparing your laboratory space and equipment prior to handling RNA to ensure the presence of RNAse and contaminants is minimal:
- Clean the lab bench space where you will carry out the work with RNaZap and tech wipes.
- Clean all equipment such as pippettes, tube racks, centrifuge and vortex with RNaZap and tech wipes.
- Use fresh tip boxes and reagents to minimise risk of contamination.
Thaw the following reagents, then spin down briefly using a microfuge and mix as indicated in the table below. Then place the reagents on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
cDNA RT Adapter (CRTA) | ✓ | ✓ | ✓ |
Annealing Buffer (AB) | ✓ | ✓ | ✓ |
Short Fragment Buffer (SFB) | ✓ | ✓ | ✓ |
RT Primer (RTP) | ✓ | ✓ | ✓ |
Strand Switching Primer II (SSPII) | ✓ | ✓ | ✓ |
NEBNext® Quick Ligation Reaction Buffer | ✓ | ✓ | Mix by vortexing |
T4 DNA Ligase 2M U/ml | Not frozen | ✓ | ✓ |
RNaseOUT | Not frozen | ✓ | ✓ |
Lambda Exonuclease | Not frozen | ✓ | ✓ |
Uracil-Specific Excision Reagent (USER) | Not frozen | ✓ | ✓ |
10 mM dNTP solution | ✓ | ✓ | ✓ |
Maxima H Minus Reverse Transcriptase | Not frozen | ✓ | ✓ |
Maxima H Minus 5x RT Buffer | ✓ | ✓ | Mix by vortexing |
重要
It is important that the NEBNext Quick Ligation Reaction Buffer is mixed well by vortexing.
Check for any visible precipitate; vortexing for at least 30 seconds may be required to solubilise all precipitate.
オプショナルステップ
To run a control experiment, replace your sample input with 10 μl diluted RNA Control Sample (RCS) from the RNA Control Expansion (EXP-RCS001) as follows:
This step differs slightly depending on the concentration of RNA CS (RCS) in your kit. Please ensure you are following the correct method and inputs for your RNA CS (RCS) concentration:
We have increased the concentration of the RNA CS (RCS) vials found in newer batches of EXP-RCS001.
Batch RCS001.10.xxxx or older | Batch RCS001.20.0001 or newer |
---|---|
Lower concentration of the RNA CS (RCS) vial: 15 ng/µl | Increased concentration of the RNA CS (RCS) vial: 50 ng/µl |
- Thaw the RNA Control Sample (RCS) at room temperature, briefly spin down and mix well by pipetting.
- Dilute the RNA Control Sample (RCS) in a 1.5 ml Eppendorf DNA LoBind tube as follows:
For higher concentration RNA CS (RCS): kit batch RCS001.20.0001 or newer:
Reagent | Volume |
---|---|
RNA Control Sample (RCS) | 1 μl |
Nuclease-free water | 46 μl |
Total | 47 μl |
Note: This will provide enough volume for 4 samples, adjust your volumes accordingly for the number of samples you wish to run in your control experiment.
- Mix thoroughly by pipetting 10-20 times and briefly spin down.
- Use the 10 μl of diluted RNA Control Sample (RCS) as your RNA input.
For lower concentration RNA CS (RCS): kit batch RCS001.10.xxxx or older
Reagent | Volume |
---|---|
RNA Control Sample (RCS) | 1 μl |
Nuclease-free water | 14 μl |
Total | 15 μl |
Note: This will provide enough volume for 1 sample, adjust your volumes accordingly for the number of samples you wish to run in your control experiment.
- Mix thoroughly by pipetting 10-20 times and briefly spin down.
- Use the 10 μl of diluted RNA Control Sample (RCS) as your RNA input.
For each sample, prepare the RNA in nuclease-free water:
- Transfer 10 ng Poly(A)+ RNA, or 500 ng total RNA into a 0.2 ml thin-walled PCR tube
- Adjust the volume to up to 10 μl with nuclease-free water
- Mix by flicking the tube to avoid unwanted shearing
- Spin down briefly in a microfuge
Prepare the following in a 0.2 ml PCR tube per sample:
Reagent | Volume |
---|---|
RNA | 10 µl |
cDNA RT Adapter (CRTA) | 1 µl |
Annealing Buffer (AB) | 1 µl |
Total volume | 12 µl |
ヒント
The cDNA RT Adapter (CRTA) is a double stranded adapter with a poly(T) overhang which anneals to the very end of the poly(A) tail of the RNA strand. This ensures that the full length of the RNA is reverse transcribed and that the poly(A) length can be estimated accurately. Annealing Buffer (AB) has been included to improve CRTA ligation.
Mix gently by flicking the tubes, and spin down.
Incubate the reactions in the thermal cycler at 60°C for 5 mins, then cool for 5 minutes at room temperature.
To each of the 0.2 ml PCR tubes containing you RNA sample(s), add the following:
Reaction | Volume |
---|---|
RNA sample (from previous step) | 12 µl |
NEBNext® Quick Ligation Reaction Buffer | 3.6 µl |
T4 DNA Ligase 2M U/ml | 1.4 µl |
RNaseOUT | 1 µl |
Total volume (including all reagents) | 18 µl |
Ensure the components are thoroughly mixed by pipetting the contents of the tubes 10 times and spin down.
Note: Mix gently to minimise introducing air bubbles to the reactions.
Incubate for 10 minutes at room temperature.
To each of the 0.2 ml PCR tubes, add the following:
Reagent | Volume |
---|---|
RNA sample (from previous step) | 18 µl |
Lambda Exonuclease | 1 µl |
USER (Uracil-Specific Excision Reagent) | 1 µl |
Total volume (including all reagents) | 20 µl |
ヒント
The Lambda Exonuclease and Uracil-Specific Excision Reagent (USER) are third-party reagents used in the preparation of the reverse transcription step. Lambda Exonuclease and USER digest the bottom strand of the ligated CRTA so that the RT Primer (RTP) can bind the CRTA sequence as a primer for the reverse transcription of the RNA.
Ensure the components are thoroughly mixed by flicking the tubes and spin down.
Incubate for 5 minutes at 37°C in the thermal cycler.
Transfer each sample to clean 1.5 ml Eppendorf DNA LoBind tubes.
Resuspend the RNase-free XP beads by vortexing.
Add 36 µl of resuspended RNase-free XP beads to each reaction and mix gently by flicking the tubes.
Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。
Spin down the samples and pellet on a magnet. Keep the tubes on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 100 µl of Short Fragment Buffer (SFB) as follows:
- Wash the beads with 100 µl of Short Fragment Buffer (SFB).
- Keeping the magnetic rack on the benchtop, rotate the tube by 180°. Wait for the beads to migrate towards the magnet and to form a pellet.
- Rotate the tube 180° again (back to the starting position), and wait for the beads to pellet again.
- Without disturbing the pellet, remove the Short Fragment Buffer (SFB) using a pipette and discard.
Repeat the previous step.
Spin down and place the tubes back on the magnet. Pipette off any residual buffer. Briefly allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
Remove the tubes from the magnetic rack and resuspend each pellet in 12 µl of nuclease-free water.
Incubate at room temperature for 10 minutes.
Pellet the beads on a magnet until the eluate is clear and colourless.
Remove and retain 12 µl of eluate into a clean 0.2 ml thin-walled PCR tube per sample.
To each of the 0.2 ml PCR tubes, add the following:
Reagents | Volume |
---|---|
Eluted sample (from previous step) | 12 µl |
RT Primer (RTP) | 1 µl |
dNTPs (10 mM) | 1 µl |
Total volume (including all reagents) | 14 µl |
ヒント
RT Primer (RTP) is a single stranded primer and binds upstream of the poly(A) tail of the RNA transcript to prime for reverse transcription.
Ensure the components are thoroughly mixed by flicking the tubes and spin down.
Incubate the reaction for 5 minutes at room temperature.
To each of the 0.2 ml PCR tubes, add the following:
Reagents | Volume |
---|---|
RT primed sample (from previous step) | 14 µl |
Maxima H Minus 5x RT Buffer | 4.5 µl |
RNaseOUT | 1 µl |
Strand Switching Primer II (SSPII) | 2 µl |
Total (including all reagents) | 21.5 µl |
ヒント
Strand Switching Primer II (SSPII) base pairs to the deoxycytidine present at the 5' end of the first cDNA strand synthesised. This allows the reverse transcriptase to "strand-switch" for synthesis of the second cDNA strand.
Mix gently by flicking the tubes, and spin down.
Incubate at 42°C for 2 minutes in the thermal cycler.
Add 1 µl of Maxima H Minus Reverse Transcriptase to each tube. The total volume will be 22.5 µl per tube.
Mix gently by flicking the tubes, and spin down.
Incubate using the following protocol using a thermal cycler:
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Reverse transcription and strand-switching | 42°C | 30 mins | 1 |
Heat inactivation | 85°C | 5 mins | 1 |
Hold | 4°C | ∞ |
最終ステップ
Take your samples forward into the next step. However, at this point it is also possible to store the sample at -20°C overnight.
4. Selecting for full-length transcripts by PCR
材料
- Barcode Primers (BP01-24)
- Elution Buffer (EB)
消耗品
- LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
- Thermolabile Exonuclease I (NEB, M0568)
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
- Freshly prepared 70% ethanol in nuclease-free water
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- 1.5 ml Eppendorf DNA LoBind tubes
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- 0.2 ml PCR tubes
装置
- Thermal cycler
- ボルテックスミキサー
- Hula mixer(緩やかに回転するミキサー)
- 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
- アイスバケツ(氷入り)
- P1000 ピペット及びチップ
- P200 ピペットとチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- P2 ピペットとチップ
- Qubit蛍光光度計(またはQCチェックのための同等品)
- Agilent Bioanalyzer (or equivalent)
重要
This kit enables multiplexing of up to 24 samples. The default method allows you to perform one 25 µl PCR reaction per sample. If multiplexing two or three samples, however, two separate PCR reactions per sample should be performed; if running just one sample, four separate PCR reactions should be performed as per the PCR-cDNA Sequencing Kit V14 (SQK-PCS114) protocol. These recommendations aim to ensure that enough PCR product is generated for optimal flow cell performance.
Reverse transcriptase is a PCR inhibitor and the reverse-transcribed sample must be diluted enough for PCR to take place.
Note: Use one set of Barcode Primers per sample.
Thaw the following reagents, then spin down briefly using a microfuge and mix as indicated in the table below. Then place the reagents on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
Barcode Primers (BP01 - BP24) | ✓ | ✓ | ✓ |
Elution Buffer (EB) | ✓ | ✓ | ✓ |
LongAmp Hot Start Taq 2X Master Mix | ✓ | ✓ | ✓ |
Thermolabile Exonuclease I | Not frozen | ✓ | ✓ |
Spin down the reverse-transcribed RNA samples.
Prepare a separate 0.2 ml PCR tube for each sample and add 5 μl of reverse-transcribed RNA per tube.
重要
Only 5 µl of the reverse-transcribed sample is to be taken forward. Do NOT use all the 22.5 µl of the reverse transcription reaction in a single PCR reaction.
In each of the 0.2 ml PCR tubes containing reverse-transcribed RNA sample, prepare the following reaction at room temperature:
Reagent | Volume |
---|---|
Reverse-transcribed sample (from previous step) | 5 μl |
Unique Barcode Primer (BP01-24) | 0.75 μl |
Nuclease-free water | 6.75 μl |
2x LongAmp Hot Start Taq Master Mix | 12.5 μl |
Total (including all reagents) | 25 μl |
Mix gently by pipetting.
Amplify using the following cycling conditions.
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Initial denaturation | 95°C | 30 secs | 1 |
Denaturation | 95°C | 15 secs | 10-18* |
Annealing | 62°C | 15 secs | 10-18* |
Extension | 65°C | 60 secs per kb | 10-18* |
Final extension | 65°C | 6 mins | 1 |
Hold | 4°C | ∞ |
*We recommend 14 cycles as a starting point. However, the number of cycles can be adjusted between the values shown according to experimental needs.
For further information, please read The effect of varying the number of PCR cycles in the PCR-cDNA Sequencing Kit document.
Add 1 μl Thermolabile Exonuclease I directly to each PCR tube. Mix by flicking the tube and briefly spin down.
ヒント
The Thermolabile Exonuclease I is added to remove any excess primers which have not successfully annealed.
Incubate the reaction at 37°C for 5 minutes, followed by 80°C for 2 minutes in the thermal cycler.
Transfer each sample to a clean 1.5 ml Eppendorf DNA LoBind tube.
Resuspend the AMPure XP beads by vortexing.
Add 18 µl of resuspended AMPure XP beads to each 1.5 ml Eppendorf DNA LoBind tube.
Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
Prepare 5 ml of fresh 70% ethanol in nuclease-free water.
Spin down the samples and pellet on a magnet. Keep the tubes on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 100 µl of freshly-prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
前のステップを繰り返します。
Spin down and place the tubes back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellets to the point of cracking.
Remove the tubes from the magnetic rack and resuspend each pellet in 12 µl of Elution Buffer (EB).
Incubate at room temperature for 10 minutes.
Pellet the beads on the magnet until the eluate is clear and colourless.
Remove and retain 12 µl of each eluate into a separate clean 1.5 ml Eppendorf DNA LoBind tube.
- Remove and retain the eluate which contains the cDNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
- Dispose of the pelleted beads
For each sample, analyse 1 µl of the amplified cDNA for size, quantity and quality using a Qubit fluorometer and Agilent Bioanalyzer (or equivalent) for a QC check.
重要
Sometimes a high-molecular weight product is visible in the wells of the gel when the PCR products are run, instead of the expected smear. These libraries are typically associated with poor sequencing performance. We have found that repeating the PCR with fewer cycles can remedy this.
Pool together equimolar samples of the amplified cDNA barcoded samples to a total of 50 fmols and make the volume up to 31 µl in Elution Buffer (EB).
Mass | Molarity if fragment length = 0.5 kb | Molarity if fragment length = 1.5 kb | Molarity if fragment length = 3 kb |
---|---|---|---|
5 ng | 16 fmol | 5 fmol | 3 fmol |
10 ng | 32 fmol | 11 fmol | 5 fmol |
15 ng | 49 fmol | 16 fmol | 8 fmol |
20 ng | 65 fmol | 22 fmol | 11 fmol |
25 ng | 81 fmol | 27 fmol | 13 fmol |
50 ng | 154 fmol | 51 fmol | 26 fmol |
100 ng | 324 fmol | 108 fmol | 54 fmol |
If the quantity of amplified cDNA is above 50 fmol, the remaining cDNA can be frozen and stored for another sequencing experiment (in this case, library preparation would start from the Adapter Addition step). We recommend avoiding multiple freeze-thaw cycles to prevent DNA degradation.
ヒント
推奨のライブラリー保存方法
短期間の保存や繰り返し使用する場合は__(例 フローセルをウオッシュして再度ロードする場合)は、ライブラリーをEppendorf DNA LoBindチューブに入れ、__4℃で保存 することをお勧めします。 __3か月以上の長期保存の場合は、____ライブラリーをEppendorf DNA LoBindチューブに -80 ° Cで保存 することをお勧めします。
5. Adapter addition
材料
- Rapid Adapter (RA)
- Adapter Buffer (ADB)
- Elution Buffer (EB)
消耗品
- 1.5 ml Eppendorf DNA LoBind tubes
装置
- 小型遠心機
- アイスバケツ(氷入り)
- P1000 ピペット及びチップ
- P200 ピペットとチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- P2 ピペットとチップ
重要
The Rapid Adapter (RA) used in this kit and protocol is not interchangeable with other sequencing adapters.
Thaw the kit components at room temperature, spin down briefly using a microfuge and mix by pipetting as indicated by the table below:
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
Rapid Adapter (RA) | Not frozen | ✓ | ✓ |
Adapter Buffer (ADB) | Not frozen | ✓ | ✓ |
In a fresh 1.5 ml Eppendorf DNA LoBind tube, dilute the Rapid Adapter (RA) as follows and pipette mix:
Reagents | Volume |
---|---|
Rapid Adapter (RA) | 1.5 μl |
Adapter Buffer (ADB) | 3.5 μl |
Total | 5 μl |
Add 1 μl of the diluted Rapid Adapter (RA) to the amplified cDNA library, making the total volume 32 μl.
Mix gently by flicking the tube, and spin down.
Incubate the reaction for 5 minutes at room temperature.
Spin down briefly.
最終ステップ
The prepared library is used for loading onto the flow cell. Store the library on ice until ready to load.
6. Priming and loading the PromethION flow cell
材料
- Flow Cell Flush (FCF)
- Flow Cell Tether (FCT)
- Library Solution (LIS)
- Library Beads (LIB)
- Sequencing Buffer (SB)
消耗品
- PromethION Flow Cell
- 1.5 ml Eppendorf DNA LoBind tubes
装置
- PromethION 2 Solo device
- PromethION sequencing device
- PromethION Flow Cell Light Shield
- P1000 pipette and tips
- P200 pipette and tips
- P20 pipette and tips
重要
This kit is only compatible with R10.4.1 flow cells (FLO-PRO114M).
Using the Library Solution
For most sequencing experiments, use the Library Beads (LIB) for loading your library onto the flow cell. However, for viscous libraries it may be difficult to load with the beads and may be appropriate to load using the Library Solution (LIS).
Sequencing Buffer(SB)、Library Beads(LIB)またはLibrary Solution(LISを使用する場合のみ)、Flow Cell Tether(FCT)およびFlow Cell Flush(FCF)を室温で融解してから、ボルテックスで混合します。その後、スピンダウンして氷上で保存します。
Prepare the flow cell priming mix in a suitable tube for the number of flow cells to flush. Once combined, mix well by briefly vortexing.
Reagent | Volume per flow cell |
---|---|
Flow Cell Tether (FCT) | 30 µl |
Flow Cell Flush (FCF) | 1170 µl |
Total volume | 1,200 µl |
重要
冷蔵庫からフローセルを取り出した後にフローセルが室温に戻るまで20分待ってからPromethIONに差し込んでください。湿度の高い環境ではフローセルに結露が生じることがあります。フローセルの上面と下面にある金色のコネクターピンに結露がないかを点検し、結露が確認された場合はリントフリーのウェットティッシュで拭き取ってください。フローセル下面にヒートパッド(黒いパッド)があることを確認してください。
PromethION 2 Soloの場合、フローセルは以下のようにセットします
フローセルを金属プレートの上に平らに置きます。
フローセルを、金色のピンまたは緑色の基板が見えなくなるまでドッキングポートにスライドさせます。
PromethION 24/48 の場合は、フローセルをドッキングポートにセットします
- フローセルとコネクターを水平および垂直に並べてから、所定の位置にスムーズに挿入してください。
- フローセルをしっかりと押し下げ、ラッチがかみ合い、カチッと音がして所定の位置に収まることを確認します。
重要
フローセルを誤った角度で挿入すると、PromethIONのピンが損傷し、シーケンス結果に影響を及ぼす可能性があります。PromethIONのピンが損傷している場合は、support@nanoporetech.com までご連絡ください。
インレットポートカバーを時計回りにスライドさせて開きます。
重要
フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。
インレットポートを開けた後、少量ずつ引き戻して気泡を取り除きます:
- P1000ピペットチップを200µlにセットします。
- チップをインレットポートに挿入します。
- ダイヤルが220~230µlを示すまで、またはピペットチップに少量のバッファ ーが入るのが確認できるまで、ホイールを回します。
気泡が入らないように、500 µl のプライミングミックスをインレットポートからフローセルに注入し、5分間待ちます。この間に、プロトコールの次のステップでライブラリーをロードする準備をしてください。
Library Beads(LIB)の液をピペッティングすることで十分に混合して下さい。
重要
Library Beads(LIB)チューブにはビーズの懸濁液が入っています。これらのビーズはすぐに沈殿するので、使用直前に混合することが重要です。
ほとんどのシーケンス実験にはLibrary Beads (LIB)の使用を推奨します。しかし、より粘性の高いライブラリーにはLibrary Solution(LIS)を使ってください。
新しい1.5mlのEppendorf DNA LoBindチューブに、以下のようにしてライブラリーをロードする準備をしてください
試薬 | フローセルあたりの容量 |
---|---|
Sequencing Buffer (SB) | 100 µl |
Library Beads (LIB) thoroughly mixed before use, or Library Solution (LIS) | 68 µl |
DNA library | 32 µl |
合計 | 200 µl |
注) アレイカバレッジを向上させるため、ライブラリーのローディング量を増やしました。
500μlのプライミングミックスをインレットポートにゆっくりと注入し、フローセルのプライミングを完了します。
調製したライブラリーは、ロードする直前にピペッティング混合して下さい。
P1000ピペットを使用して、インレットポートに200µlのライブラリーを注入します。
インレットポートを密閉するためにバルブを閉じます。
重要
最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。
ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。
ライトシールドがフローセルから取り外されている場合は、以下のようにライトシールドを取り付けます
- ライトシールドとインレットポートをフローセルのインレットポートカバーに合わせます。ライトシールドの前縁をフローセルIDの上に位置するようにします。
- ライトシールドをインレットポートカバーの周囲にしっかりと押し付けます。インレットポートクリップがインレットポートカバーの下にカチッとはまるようになっています。
最終ステップ
MinKNOWでシーケンスランを開始する準備ができたら、PromethIONの蓋を閉めてください。
フローセルをPromethIONにロードした後、実験を開始する前に最低10分間待ちます。この待ち時間があることで、よりシーケンス出力が向上します。
7. Data acquisition and basecalling
シークエンスの始め方
フローセルをロードしたら、MinKNOWでシーケンスランを開始します。MinKNOWは、デバイス、データ収集、リアルタイムベースコールを制御するシーケンスソフトウェアです。MinKNOWのセットアップと使用に関する詳細情報は、[MinKNOWプロトコル] MinKNOW protocolをご覧ください。
MinKNOWは、複数の方法でシーケンスに使用し、設定することができます:
- シーケンシングデバイスに直接またはリモートで接続されたコンピューター
- GridIONまたはPromethION 24/48シーケンス装置上
シーケンシングデバイス上でのMinKNOWの使用に関する詳細は、デバイスのユーザーマニュアルをご覧ください:
MinKNOWでシーケンスランを開始するには:
1. スタートページに移動し、_Start sequencing. をクリックしてください。
2. 名前、フローセルの位置、サンプルIDなど、実験の詳細を入力する。
3. Kitページで sequencing kit used in the library preparation を選択する。
4. Run configurationタブで、シーケンスラン用のシーケンスパラメータと出力パラメータを設定するか、デフォルト設定のままにする。
注): シーケンスランのセットアップ時にベースコールがオフになっている場合、ベースコールはMinKNOWでポストランに実行できます。詳細については、[MinKNOWプロトコル] MinKNOW protocol を参照してください。
5. Start をクリックしてシーケンスランを開始します。
シークエンシング後のデータ解析
MinKNOWでシークエンスが終わると、フローセルを再利用または返却ができます。詳しくは、フローセルの再利用と返却のセクションをご覧ください。
シークエンシングとベースコールの後にはデータを解析することができます。 ベースコールおよびベースコール後の解析オプションの詳細については、Data Analysis を参照してください。
ダウンストリーム解析セクションでは、データを解析するためのオプションの概要を説明しています。
8. Flow cell reuse and returns
材料
- Flow Cell Wash Kit (EXP-WSH004)
シークエンス実験終了後、フローセルを再利用する場合は、Flow Cell Wash Kitのプロトコールに従い、洗浄したフローセルを2~8℃で保管してください。
Flow Cell Wash Kit protocolは、Nanoporeコミュニティーで入手できます。
または、返送手順に従って、オックスフォード・ナノポアに返送してください。
フローセルの返却方法は hereをご覧ください。
(注: 製品を返却する前に、すべてのフローセルを脱イオン水で洗浄する必要があります。
重要
シークエンシング実験に関して問題が発生した場合や質問がある場合には、このプロトコルのオンライン版にあるトラブルシューティングガイドを参照してください。
9. Downstream analysis
ベースコール後の分析
ベースコールされたデータをさらに解析するには、いくつかの方法があります。
1. EPI2ME workflows
詳細なデータ解析のために、オックスフォード・ナノポア・テクノロジーズは、EPI2MEで利用可能な様々なバイオインフォマティクスのチュートリアルとワークフローを提供しています。このプラットフォームでは、研究チームとアプリケーションチームがGitHubに保存しているワークフローを記載しています。このプラットフォーム内にはバイオインフォマティクスのコードと説明をしているコメント、およびサンプルデータを使ってコードを試すことが出来ます。
2. 研究分析ツール
Oxford Nanopore Technologiesの研究部門では、Oxford Nanopore GitHub repositoryで多数の分析ツールを公開しています。これらのツールは上級ユーザー向けであり、ソフトウェアのインストールと実行方法の説明が含まれています。これらのツールは最低限のサポートしかしていません。
3. コミュニティーで開発されたツール
研究課題に適したデータ解析方法が上記のリソースのいずれにも記載されていない場合は、 resource centre を参照し、アプリケーションに適したバイオインフォマティクスツールを検索してください。 Nanoporeコミュニティーの多くのメンバーが、 ナノポアシークエンシングデータを解析するための独自のツールやパイプラインを開発しており、そのほとんどはGitHubで利用可能です。これらのツールはOxford Nanopore Technologiesではサポート対象外であり、最新のケミストリーやソフトウェア構成との互換性を保証するものではありませんのでご了承ください。
10. DNA/RNA抽出、およびライブラリ調製時の問題点
以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。
Nanopore Community Support セクションにFAQをご用意しています。
ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。
サンプルの品質が低い
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) | DNA抽出で必要な純度が得られていない | 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。. 追加のSPRIクリーンアップステップの実施を検討して下さい。 |
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) | 抽出中にRNAが分解された | 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。 |
RNAのフラグメントが予想より短い | 抽出中にRNAが分解された | 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。 RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。 |
AMPureビーズクリーンアップ後のDNA回収率が低い
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
低回収率 | AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 | 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。 2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。 |
低回収率 | DNA断片が予想よりも短い | サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 |
エンドプレップ後の収率が低い | 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 | エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。 |
11. Issues during the sequencing run
以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。
Nanopore Community Support セクションにFAQをご用意しています。
ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。
シークエンス開始時のポアがフローセルチェック後よりも少ない場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | ナノポアアレイに気泡が入ってしまった。 | フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。 |
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | フローセルがデバイスに正しく挿入されていない。 | シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。 |
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 | フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。 |
MinKNOWのスクリプトに問題
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
MinKNOW に 「Script failed」と表示されている" | コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。 |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
予想より短いリード長
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
予想より短いリード長 | DNAサンプルの不要な断片化 | 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。 1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。 2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。 3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。 |
利用できないポアの割合が多い場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています) 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。 | サンプル内に不純物が含まれている | 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合: 1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は 2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。 |
Inactiveのポアの割合が高い
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 | 気泡がフローセルに混入した。 | フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。 |
利用できないポアの割合が多い場合 | サンプルDNAに含まれる不純物 | 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。 1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。 2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。 3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。 |
利用できないポアの割合が多い場合 | サンプル内に不純物が含まれている | 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。 |
Reduction in sequencing speed and q-score later into the run
Observation | Possible cause | Comments and actions |
---|---|---|
Reduction in sequencing speed and q-score later into the run | For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). | Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell. |
温度変動
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
温度変動 | フローセルとデバイスの接続が途切れている。 | フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。 |
目標温度に到達しない場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" | 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 | MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。 |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |