Ligation sequencing gDNA - PCR barcoding (SQK-LSK109 with EXP-PBC001)


概要

For barcoding genomic DNA for nanopore sequencing

  • Offering highest yield
  • ~85 mins library prep
  • Using up to 12 barcodes
  • Includes PCR steps
  • Compatible with R10.3 flow cells

For Research Use Only

This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.

Document version: PBGE12_9066_v109_revV_25May22

1. Overview of the protocol

重要

This is a Legacy product

This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.

PCR Barcoding Expansion 1-12 features

This kit is recommended for users who:

  • want to optimise their sequencing experiment for throughput
  • require control over read length
  • would like to utilise upstream processes such as size selection or whole genome amplification
  • want to multiplex up to 12 different samples
重要

Optional fragmentation and size selection

By default, the protocol contains no DNA fragmentation step, however in some cases it may be advantageous to fragment your sample. For example, when working with lower amounts of input gDNA (100 ng – 500 ng), fragmentation will increase the number of DNA molecules and therefore increase throughput. Instructions are available in the DNA Fragmentation section of Extraction methods.

Additionally, we offer several options for size-selecting your DNA sample to enrich for long fragments - instructions are available in the Size Selection section of Extraction methods.

Introduction to the PCR barcoding protocol

This protocol describes how to carry out PCR barcoding of DNA using the Ligation Sequencing Kit 1D (SQK-LSK109) and the PCR Barcoding Expansion 1-12 (EXP-PBC001). It is highly recommended that a Lambda control experiment is completed first to become familiar with the technology.

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Library preparation

You will need to:

  • Prepare the DNA ends for adapter attachment
  • Attach barcoding adapters supplied in the kit to the DNA ends
  • Amplify each barcoded sample by PCR, then pool the samples together
  • Repair the DNA, and prepare the DNA ends for adapter attachment
  • Attach sequencing adapters supplied in the kit to the DNA ends
  • Prime the flow cell, and load your DNA library into the flow cell

PCR Barcoding ligation protocol svg from DT

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
  • Start the EPI2ME software and select the barcoding workflow
重要

We do not recommend mixing barcoded libraries with non-barcoded libraries prior to sequencing.

重要

Compatibility of this protocol

This protocol should only be used in combination with:

  • Ligation Sequencing Kit (SQK-LSK109)
  • FLO-MIN106D (R9.4.1) flow cells
  • Flow Cell Wash Kit (EXP-WSH004)
  • PCR Barcoding Expansion 1-12 (EXP-PBC001)

2. Equipment and consumables

材料
  • <1 µg of each DNA sample to be barcoded in 45 µl
  • PCR Barcoding Expansion 1-12 (EXP-PBC001)
  • Ligation Sequencing Kit (SQK-LSK109)
  • Flow Cell Priming Kit (EXP-FLP002)

消耗品
  • NEB Blunt/TA Ligase Master Mix (NEB, M0367)
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L). Alternatively, you can use the NEBNext® products below:
  • NEBNext FFPE Repair Mix (NEB, M6630)
  • NEBNext Ultra II End repair/dA-tailing Module (NEB, E7546)
  • NEBNext Quick Ligation Module (NEB, E6056)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml 薄壁のPCRチューブ
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Freshly prepared 70% ethanol in nuclease-free water
  • LongAmp Taq 2X Master Mix (e.g. NEB, cat # M0287)

装置
  • Hula mixer(緩やかに回転するミキサー)
  • 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
  • 小型遠心機
  • ボルテックスミキサー
  • サーマルサイクラー
  • P1000 ピペット及びチップ
  • P200 ピペットとチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
  • P2 ピペットとチップ
  • アイスバケツ(氷入り)
  • タイマー
オプション装置
  • Agilent Bioanalyzer (or equivalent)
  • Qubit fluorometer (or equivalent for QC check)
  • Eppendorf 5424 centrifuge (or equivalent)

For this protocol, you will need <1 µg of each DNA sample to be barcoded in 45 µl.

インプットDNA

インプットDNAのQC方法

インプットDNAの量と品質の要件を満たすことが重要です。DNAの使用量が少なすぎたり多すぎたり、あるいは品質の低いDNA(例としてDNAが非常に断片化されていたり、RNAや化学汚染物質が含まれている場合など)を使用すると、ライブラリーの調製に影響を及ぼす可能性があります。

DNAサンプルの品質管理の方法については、Input DNA/RNA QC protocolのプロトコルをご覧ください。

コンタミネーション

DNAの抽出する方法によっては、精製DNAに特定の化学汚染物質が残留する可能性があり、ライブラリ調製の効率やシークエンシングの品質に影響を及ぼす可能性があります。コンタミネーションについての詳細は、コミュニティーの Contaminants page をご覧ください。

NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing

For customers new to nanopore sequencing, we recommend buying the NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7180S or E7180L), which contains all the NEB reagents needed for use with the Ligation Sequencing Kit.

Please note, for our amplicon protocols, NEBNext FFPE DNA Repair Mix and NEBNext FFPE DNA Repair Buffer are not required.

PCR Barcoding Expansion 1-12 (EXP-PBC001) contents

2017 07 18 PCB v1 DS

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
PCR Barcode 1-12 BC1-12 Clear 12 20
Barcode Adapter BCA Blue stripe 1 260

Ligation Sequencing Kit contents (SQK-LSK109)

SQK-LSK109 v1

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
DNA CS DCS Yellow 1 50
Adapter Mix AMX Green 1 40
Ligation Buffer LNB Clear 1 200
L Fragment Buffer LFB White cap, orange stripe on label 2 1,800
S Fragment Buffer SFB Grey 2 1,800
Sequencing Buffer SQB Red 2 300
Elution Buffer EB Black 1 200
Loading Beads LB Pink 1 360

Flow Cell Priming Kit contents (EXP-FLP002)

FLP

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Flush Buffer FB Blue 6 1,170
Flush Tether FLT Purple 1 200

3. Computer requirements and software

MinION Mk1B IT requirements

Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1B IT requirements document.

MinION Mk1C IT requirements

The MinION Mk1C contains fully-integrated compute and screen, removing the need for any accessories to generate and analyse nanopore data. For more information refer to the MinION Mk1C IT requirements document.

MinION Mk1D IT requirements

Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

EPI2ME (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.

フローセルのチェックをしてください

シークエンシング実験を開始する前に、フローセルのポアの数を確認することを強くお勧めします。このフローセルの確認は、MinION/GridION/PromethIONの場合は代理店への到着から12週間以内に行ってください。またはFlongle Flow Cellの場合は代理店への到着から4週間以内に行う必要があります。Oxford Nanopore Technologiesは、フローセルチェックの実施から2日以内に結果が報告され、推奨される保管方法に従っていた場合に、以下の表に記載されているナノポアの有効数に満たさない場合には、フローセルを交換します。 フローセルのチェックを行うには、Flow Cell Check documentの指示に従ってください。

Flow cell 保証する最小有効ポア数(以下の数未満のフローセルが交換対象となります)
Flongle Flow Cell 50
MinION/GridION Flow Cell 800
PromethION Flow Cell 5000

4. End-prep

材料
  • <1 µg of each DNA sample to be barcoded in 45 µl

消耗品
  • NEBNext Ultra II End repair/dA-tailing Module (NEB, E7546)
  • Freshly prepared 70% ethanol in nuclease-free water
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • 0.2 ml 薄壁のPCRチューブ

装置
  • サーマルサイクラー
  • アイスバケツ(氷入り)
  • Microfuge
  • 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
オプション装置
  • Qubit fluorometer (or equivalent for QC check)
重要

Optional fragmentation and size selection

By default, the protocol contains no DNA fragmentation step, however in some cases it may be advantageous to fragment your sample. For example, when working with lower amounts of input gDNA (100 ng – 500 ng), fragmentation will increase the number of DNA molecules and therefore increase throughput. Instructions are available in the DNA Fragmentation section of Extraction methods.

Additionally, we offer several options for size-selecting your DNA sample to enrich for long fragments - instructions are available in the Size Selection section of Extraction methods.

Prepare the DNA in nuclease-free water.

  1. Transfer <1 μg DNA of each sample into a fresh 0.2 ml PCR tube or plate
  2. Adjust the volume to 45 μl with nuclease-free water
  3. Mix thoroughly by flicking the tube to avoid unwanted shearing
  4. Spin down briefly in a microfuge

Using a separate 0.2 ml thin-walled PCR tube for each DNA sample to be barcoded, set up the end-repair / dA-tailing reactions as follows:

Between each addition, pipette mix 10-20 times.

Reagent Volume
<1 µg DNA 45 µl
Ultra II End-prep reaction buffer 7 µl
Ultra II End-prep enzyme mix 3 µl
Nuclease-free water 5 µl
Total 60 µl

Mix by pipetting.

サーマルサイクラーを使用して、初めに20℃で5分間インキュベートした後に、65℃で5分間インキュベートしてください。

Transfer each sample to a separate 1.5 ml Eppendorf DNA LoBind tube.

Resuspend the AMPure XP beads by vortexing.

Add 60 µl of resuspended AMPure XP beads to the end-prep reaction and mix by pipetting.

Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。

Prepare sufficient fresh 70% ethanol in nuclease-free water.

Place on a magnetic rack, allow beads to pellet and pipette off supernatant.

Keep the tube on the magnet and wash the beads with 180 µl of freshly-prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

前のステップを繰り返します。

Spin down and place the tubes back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.

Remove the tubes from the magnetic rack and resuspend the pellet in 31 µl nuclease-free water. Incubate for 2 minutes at room temperature.

Pellet the beads on a magnet until the eluate is clear and colourless.

Remove eluate once it is clear and colourless. Transfer each eluted sample to a new 0.2 ml thin-walled PCR tube.

Quantify 1 µl of end-prepped DNA using a Qubit fluorometer - recovery aim >700 ng.

最終ステップ

Take forward approximately 700 ng of end-prepped DNA in 30 µl nuclease-free water into adapter ligation. However, at this point, it is also possible to store the sample at 4°C overnight.

5. Ligation of Barcode Adapter

材料
  • Barcode Adapter (BCA)

消耗品
  • 1.5 ml Eppendorf DNA LoBind tubes
  • NEB Blunt/TA Ligase Master Mix (NEB, cat # M0367)
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Freshly prepared 70% ethanol in nuclease-free water
  • 10 mM Tris-HCl pH 8.5

装置
  • 小型遠心機
  • Hula mixer(緩やかに回転するミキサー)
  • ボルテックスミキサー
  • 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
  • アイスバケツ(氷入り)
オプション装置
  • Agilent Bioanalyzer (or equivalent)

Add the reagents in the order given below, mixing by pipetting between each sequential addition:

Between each addition, pipette mix 10-20 times.

Reagent Volume
End prep DNA 30 µl
Barcode Adapter 20 µl
Blunt/TA Ligase Master Mix 50 µl
Total 100 µl

Mix gently by flicking the tube, and spin down.

Incubate the reaction for 10 minutes at room temperature.

Resuspend the AMPure XP beads by vortexing.

Add 40 µl of resuspended AMPure XP beads to the reaction and mix by flicking the tube.

Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.

Prepare 500 μl of fresh 70% ethanol in nuclease-free water.

Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.

Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

前のステップを繰り返します。

Spin down and place the tube back on the magnet. Pipette off any residual 70% ethanol. Briefly allow to dry.

Remove the tube from the magnetic rack and resuspend pellet in 25 µl nuclease-free water. Incubate for 2 minutes at room temperature.

Pellet the beads on a magnet until the eluate is clear and colourless.

Remove and retain 15 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Remove and retain the eluate which contains the DNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
  • Dispose of the pelleted beads

Quantify 1 µl of end-prepped DNA using a Qubit fluorometer.

Dilute the library to a concentration of 10 ng/µl with nuclease-free water or 10 mM Tris-HCl pH 8.5.

最終ステップ

Take forward the sample to the next step. However, at this point it is also possible to store the sample at 4°C overnight.

6. Barcoding PCR

材料
  • PCR Barcode Primers (BC01-12, at 10 µM)

消耗品
  • LongAmp Taq 2X Master Mix (e.g. NEB, cat # M0287)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)
  • Freshly prepared 70% ethanol in nuclease-free water

装置
  • Thermal cycler
  • マグネットラック
  • Hula mixer(緩やかに回転するミキサー)

Set up a barcoding PCR reaction as follows for each library:

The following is written for LongAmp Taq, but can be adapted for use with other polymerases.

Between each addition, pipette mix 10-20 times.

Reagent Volume
PCR Barcode (one of BC01-BC12, at 10 µM) 2 µl
10 ng/µl adapter ligated template 2 µl
LongAmp Taq 2x master mix 50 µl
Nuclease-free water 46 µl
Total volume 100 µl

If the amount of input material is altered, the number of PCR cycles may need to be adjusted to produce the same yield.

Mix gently by flicking the tube, and spin down.

Amplify using the following cycling conditions:

Cycle step Temperature Time No. of cycles
Initial denaturation 95 °C 3 mins 1
Denaturation 95 °C 15 secs 12-15 (b)
Annealing 62 °C (a) 15 secs (a) 12-15 (b)
Extension 65 °C (c) dependent on length of target fragment (d) 12-15 (b)
Final extension 65 °C dependent on length of target fragment (d) 1
Hold 4 °C

a. This is specific to the Oxford Nanopore primer and should be maintained

b. Adjust accordingly if input quantities are altered

c. This temperature is determined by the type of polymerase that is being used (given here for LongAmp Taq polymerase)

d. Adjust accordingly for different lengths of amplicons and the type of polymerase that is being used. Oxford Nanopore R&D teams standardly use 8 min for DNA fragmented to 8 kb.

Transfer each sample to a separate 1.5 ml Eppendorf DNA LoBind tube.

Resuspend the AMPure XP beads by vortexing.

Add 60 µl of resuspended AMPure XP beads to each reaction and mix by flicking the tube.

Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。

Prepare sufficient fresh 70% ethanol in nuclease-free water.

Spin down the samples and pellet the beads on a magnet until the eluate is clear and colourless. Keep the tubes on the magnet and pipette off the supernatant.

Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repeat the previous step.

Spin down and place the tubes back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.

Remove the tubes from the magnetic rack and resuspend each pellet in 10 µl nuclease-free water. Incubate for 2 minutes at room temperature.

Pellet the beads on a magnet until the eluate is clear and colourless.

Remove and retain 10 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Dispose of the pelleted beads

Quantify the barcoded library using standard techniques, and pool all barcoded libraries in the desired ratios in a 1.5 ml DNA LoBind Eppendorf tube.

Prepare 1 µg of pooled barcoded libraries in 47 µl nuclease-free water.

最終ステップ

This pooled library is now ready to be end-repaired and adapted for sequencing. However, at this point it is also possible to store the sample at 4°C overnight.

7. End-prep

材料
  • Pooled barcoded DNA
  • DNA Control Sample (DCS)
  • AMPure XP Beads (AXP)

消耗品
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • NEBNext® Ultra II End Repair / dA-tailing Module (NEB, E7546)
  • nuclease-free waterで調整した 80% エタノール溶液
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

装置
  • P1000 ピペット及びチップ
  • P100 ピペットとチップ
  • P10 ピペットとチップ
  • Thermal cycler
  • 小型遠心機
  • Hula mixer(緩やかに回転するミキサー)
  • マグネットラック
  • アイスバケツ(氷入り)
オプション装置
  • Qubit蛍光光度計(またはQCチェックのための同等品)

DNA Control Sample(DCS)を室温で融解し、スピンダウンしてピペッティングで混合し、氷上に置きます。

ヒント

トラブルシューティングの為、DNAコントロールサンプル(DCS)を自身のライブラリーに添加して、プレップコントロール用に使用することを推奨します。ただし、このステップを省略して、1 µlをサンプルDNAで補うこともできます。

Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:

For optimal performance, NEB recommend the following:

  1. Thaw all reagents on ice.

  2. Ensure the reagents are well mixed.
    Note: Do not vortex the Ultra II End Prep Enzyme Mix.

  3. Always spin down tubes before opening for the first time each day.

  4. The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.

In a 0.2 ml thin-walled PCR tube, mix the following:

Reagent Volume
DNA Control Sample (DCS) 1 µl
DNA 49 µl
Ultra II End-prep Reaction Buffer 7 µl
Ultra II End-prep Enzyme Mix 3 µl
Total 60 µl

Ensure the components are thoroughly mixed by pipetting.

サーマルサイクラーを使用して、初めに20℃で5分間インキュベートした後に、65℃で5分間インキュベートしてください。

重要

AMPure XP bead clean-up

It is recommended that the repaired/end-prepped DNA sample is subjected to the following clean-up with AMPure XP beads. This clean-up can be omitted for simplicity and to reduce library preparation time. However, it has been observed that omission of this clean-up can: reduce subsequent adapter ligation efficiency, increase the prevalence of chimeric reads, and lead to an increase in pores being unavailable for sequencing. If omitting the clean-up step, proceed to the next section.

Resuspend the AMPure XP Beads (AXP) by vortexing.

DNA サンプルを清潔な 1.5 ml エッペンドルフ DNA LoBind チューブに移してください。

再懸濁したAMPure XP Beads (AXP) 60 µlをエンドプレップ反応に加え、チューブをフリッ クして混和します。

Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。

新鮮な80%エタノールをヌクレアーゼフリー水で500μl用意します。

チューブをスピンダウンした後、マグネットラック上で、上清が無色透明になるまで置きます。チューブを磁石の上に置いたまま、上清をピペットで取り除いていきます。ピペットを使用してエタノールを除去し 、 廃棄してください。

チューブをマグネットの上に置き、ペレットを乱さないように、200 µl の新しく調製した 80% エタノールでビーズを洗浄します。

前のステップを繰り返します。

スピンダウンし、チューブをマグネットの上に戻します。残ったエタノールをピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。

チューブをマグネットラックから取り出し、ペレットを61μlのヌクレアーゼフリー 水に懸濁します。室温で2分間インキュベートします。

溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。

61μlの溶出液を除去し、清潔な1.5mlエッペンドルフDNA LoBindチューブに保持します。

オプショナルステップ

Quantify 1 µl of eluted sample using a Qubit fluorometer.

最終ステップ

エンドプレップと修復されたDNAをアダプターライゲーションのステップに進めます。なお、この時点でサンプルを4℃で一晩保存することも可能です。

8. Adapter ligation and clean-up

材料
  • Adapter Mix (AMX)
  • Ligation Buffer (LNB)
  • Long Fragment Buffer (LFB)
  • Short Fragment Buffer (SFB)
  • Elution Buffer (EB)

消耗品
  • NEBNext Quick Ligation Module (NEB, E6056)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)

装置
  • マグネットラック
  • 小型遠心機
  • ボルテックスミキサー
  • P1000 ピペット及びチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
重要

Although the recommended third-party ligase is supplied with its own buffer, the ligation efficiency of Adapter Mix (AMX) is higher when using Ligation Buffer supplied within the Ligation Sequencing Kit.

Spin down the Adapter Mix (AMX) and Quick T4 Ligase, and place on ice.

ライゲーションバッファー(LNB)を室温で融解し、スピンダウンしてピペッティングで混合します。粘性が高い為、この緩衝液をボルテックスするのは効果的ではないです。解凍して混ぜたら、すぐに氷の上に置いてください。

溶出バッファー(EB)を室温で融解し、ボルテックスで混合します。その後、スピンダウンして氷の上に置きます。

重要

使用するウォッシュバッファー(LFBまたはSFB)に応じて、アダプターライゲーション後のクリーンアップステップは、3 kb以上のDNAの断片を濃縮するか、全ての断片長を均等に精製するように設計されています。

  • 3kb以上のDNA断片を濃縮するには、Long Fragment Buffer (LFB)を使用してください。
  • 一方であらゆるサイズの DNA 断片を保持するには、Short Fragment Buffer (SFB) を使用してください。

To enrich for DNA fragments of 3 kb or longer, thaw one tube of Long Fragment Buffer (LFB) at room temperature, mix by vortexing, spin down and place on ice.

To retain DNA fragments of all sizes, thaw one tube of Short Fragment Buffer (SFB) at room temperature, mix by vortexing, spin down and place on ice.

In a 1.5 ml Eppendorf DNA LoBind tube, mix in the following order:

Between each addition, pipette mix 10 - 20 times.

Reagent Volume
DNA sample from the previous step 60 µl
Ligation Buffer (LNB) 25 µl
NEBNext Quick T4 DNA Ligase 10 µl
Adapter Mix (AMX) 5 µl
Total 100 µl

Ensure the components are thoroughly mixed by pipetting, and spin down.

反応液を室温で10分間インキュベートします。

重要

If you have omitted the AMPure purification step after DNA repair and end-prep, do not incubate the reaction for longer than 10 minutes.

Resuspend the AMPure XP beads by vortexing.

Add 40 µl of resuspended AMPure XP beads to the reaction and mix by flicking the tube.

Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。

サンプルをスピンダウンし、マグネット上でペレット化します。チューブをマグネットの上に置き、無色透明になったら上清をピペットで取り除きます。

Long Fragment Buffer(LFB)250 μl、または Short Fragment Buffer(SFB)250 μl を加えてビーズをウオッシュします。タッピングしてビーズを再懸濁させ、スピンダウンします。チューブをマグネットラックに戻し、ビーズをペレット化させます。ピペットで上清を取り除き、廃棄します。

前のステップを繰り返します。

スピンダウンし、チューブをマグネットの上に戻します。残った上清をピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。

チューブをマグネットラックから取り出し、ペレットを15 µlの溶出バッファー(EB)に懸濁します。スピンダウンし、室温で10分間インキュベートして下さい。高分子量のDNAの場合は、37℃でインキュベートすると長い断片の回収率が向上します。

溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。

DNA ライブラリーを含む 15 µl の溶出液を取り出し、清潔な 1.5 ml Eppendorf DNA LoBind tube に移し替えます。

ペレット化したビーズを廃棄します。

CHECKPOINT

Qubit蛍光光度計を使用して、溶出したサンプル1 µlを定量します。

重要

We recommend loading 5-50 fmol of the final prepared library onto a flow cell.

Loading more than the maximal recommended amount of DNA can have a detrimental effect on output as higher quantities of DNA results in a larger number of ligated DNA ends with loaded motor protein. This depletes fuel in the Sequencing Buffer, regardless of whether or not the DNA fragments are being sequenced. This leads to fuel depletion and speed drop-off early in the sequencing run. Dilute the libraries in Elution Buffer if required.

If you are using the Flongle for sample prep development, we recommend loading 3-20 fmol instead.

最終ステップ

調製されたライブラリーは、フローセルへのロードに使用されます。ライブラリーは、ロードの準備ができるまで氷上、または4℃で保存して下さい。

ヒント

Library storage recommendations

We recommend storing libraries in Eppendorf DNA LoBind tubes at 4°C for short term storage or repeated use, for example, reloading flow cells between washes. For single use and long-term storage of more than 3 months, we recommend storing libraries at -80°C in Eppendorf DNA LoBind tubes. For further information, please refer to the DNA library stability Know-How document.

オプショナルステップ

If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.

Additional buffer for doing this can be found in the Sequencing Auxiliary Vials expansion (EXP-AUX001), available to purchase separately. This expansion also contains additional vials of Sequencing Buffer (SQB) and Loading Beads (LB), required for loading the libraries onto flow cells.

9. Priming and loading the SpotON flow cell

材料
  • Flow Cell Priming Kit (EXP-FLP002)
  • Loading Beads (LB)
  • Sequencing Buffer (SQB)

消耗品
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Nuclease-free water (e.g. ThermoFisher, AM9937)

装置
  • MinION Mk1B or Mk1C
  • SpotON Flow Cell
  • P1000 ピペット及びチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
ヒント

フローセルのプライミングとローディング

新規ユーザーは、 初回使用前に'Priming and loading your flow cell' のビデオをご覧いただくことをお勧めします。

Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing, and spin down at room temperature.

To prepare the flow cell priming mix, add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.

Open the MinION device lid and slide the flow cell under the clip.

Press down firmly on the flow cell to ensure correct thermal and electrical contact.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

オプショナルステップ

ライブラリーをロードする前にフローセルチェックを行い、使用可能なポアの数を把握して下さい。

フローセルが以前にチェックされている場合は、このステップを省略できます。

詳細については、MinKNOWプロトコルのフローセルチェックの手順 flow cell check instructionsを参照してください。

フローセルのプライミングポートカバーを時計方向にスライドさせ、プライミングポートを開きます。

Flow Cell Loading Diagrams Step 2_JP

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。

  1. P1000ピペットを200 µ Lに設定して下さい。
  2. ピペットの先端をプライミングポートに差し込みます。
  3. 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。

(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。

Flow Cell Loading Diagrams Step 03 V5_JP

気泡が混入しないように、プライミングポートからフローセルにプライミングミックスを800µl注入し、 5分間待ちます。この5分間の間に、以下の手順でライブラリーをロードする準備をして下さい。

Flow Cell Loading Diagrams Step 04 V5_JP

Thoroughly mix the contents of the Loading Beads (LB) by pipetting.

重要

The Loading Beads (LB) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the library for loading as follows:

Reagent Volume per flow cell
Sequencing Buffer (SQB) 37.5 µl
Loading Beads (LB), mixed immediately before use 25.5 µl
DNA library 12 µl
Total 75 µl

Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer (SQB) and Loading Beads (LB) because the fuel in the buffer will start to be consumed by the adapter.

フローセルのプライミングを完了させます。

  1. SpotON サンプルポートカバーをゆっくりと持ち上げ、SpotON サンプルポートにアクセスできるようにします。
  2. 200μlのプライミングミックスをフローセルのプライミングポート(SpotONサンプルポートではありません)に気泡が入らないように注入します。

Flow Cell Loading Diagrams Step 5_JP

Flow Cell Loading Diagrams Step 06 V5_JP

調製したライブラリーは、ロードする直前にピペッティング混合して下さい。

調製したライブラリー75μlをSpotONサンプルポートからフローセルに滴下します。次の一滴を追加する前に各一滴がポートに入っていることを確認して下さい。

Flow Cell Loading Diagrams Step 07 V5_JP

Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the MinION device lid.

Flow Cell Loading Diagrams Step 8

Flow Cell Loading Diagrams Step 9

10. Data acquisition and basecalling

シークエンスの開始方法

フローセルをロードしたら、MinKNOWでシークエンシングランを開始できます。MinKNOWは、装置、データ収集、リアルタイムベースコールを制御するシークエンスソフトウェアです。 MinKNOWの設定と使用の詳細については、MinKNOW Protocolを参照してください。

MinKNOWは、複数の方法でシークエンスの設定をすることができます。

  • シークエンシングデバイスに直接かリモートで接続されているコンピューター。
  • GridION、Minion Mk1C、またはPromethion 24/48シークエンシングデバイスで直接使用できます。

シークエンス装置でMinKNOWを使用する方法の詳細については、装置のユーザーマニュアルを参照してください。


MinKNOWでシークエンスランを開始するには、次の手順に従います。

1. スタートページに移動し、 Start sequencing をクリックします。

2. 名前、フローセルの位置、サンプルIDなどの実験の詳細を入力します。

3. キットのページで、ライブラリー調製に使用するシークエンシングキットを選択します。

4. シークエンスランのパラメータの変更を設定(ランオプションの変更など)するか、デフォルト設定のままにします。

(注: シークエンスランの設定時にベースコールがオフになっていた場合には、MinKNOWでポストラン・ベースコールを後日に実行することも出来ます。詳細については、MinKNOW protocolを参照してください。

5. Start をクリックしてシークエンスランを開始します。

シークエンシング後のデータ解析

MinKNOWでシークエンスが終わると、フローセルを再利用または返却ができます。詳しくは、フローセルの再利用と返却のセクションをご覧ください。

シークエンシングとベースコールの後にはデータを解析することができます。 ベースコールおよびベースコール後の解析オプションの詳細については、Data Analysis を参照してください。

ダウンストリーム解析セクションでは、データを解析するためのオプションの概要を説明しています。

11. フローセルの再利用と返却

材料
  • Flow Cell Wash Kit (EXP-WSH004)

シークエンス実験終了後、フローセルを再利用する場合は、Flow Cell Wash Kitのプロトコールに従い、洗浄したフローセルを2~8℃で保管してください。

Flow Cell Wash Kit protocolは、Nanoporeコミュニティーで入手できます。

ヒント

運転を停止したらできるだけ早くフローセルをウォッシュすることをお勧めします。しかし、これが不可能な場合はフローセルをデバイスに入れたまま、翌日にウォッシュをして下さい。

または、返送手順に従って、オックスフォード・ナノポアに返送してください。

フローセルの返却方法は hereをご覧ください。

(注: 製品を返却する前に、すべてのフローセルを脱イオン水で洗浄する必要があります。

重要

シークエンシング実験に関して問題が発生した場合や質問がある場合には、このプロトコルのオンライン版にあるトラブルシューティングガイドを参照してください。

12. Downstream analysis

Post-basecalling analysis

There are several options for further analysing your basecalled data:

1. EPI2ME workflows

For in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials and workflows available in EPI2ME. The platform provides a vehicle where workflows deposited in GitHub by our Research and Applications teams can be showcased with descriptive texts, functional bioinformatics code and example data.

2. Research analysis tools

Oxford Nanopore Technologies' Research division has created a number of analysis tools, which are available in the Oxford Nanopore GitHub repository. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.

3. Community-developed analysis tools

If a data analysis method for your research question is not provided in any of the resources above, please refer to the resource centre and search for bioinformatics tools for your application. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.

13. DNA/RNA抽出、およびライブラリ調製時の問題点

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

サンプルの品質が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) DNA抽出で必要な純度が得られていない 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。.

追加のSPRIクリーンアップステップの実施を検討して下さい。
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。
RNAのフラグメントが予想より短い 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。

RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。

AMPureビーズクリーンアップ後のDNA回収率が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
低回収率 AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。

2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。
低回収率 DNA断片が予想よりも短い サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 SPRI cleanup
エンドプレップ後の収率が低い 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。

14. Issues during the sequencing run

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

シークエンス開始時のポアがフローセルチェック後よりも少ない場合

問題点 予想される原因 解決策とコメント
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ナノポアアレイに気泡が入ってしまった。 フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 フローセルがデバイスに正しく挿入されていない。 シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。

MinKNOWのスクリプトに問題

問題点 この問題が生じた可能性のある原因 解決策とコメント
MinKNOW に 「Script failed」と表示されている"
コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

予想より短いリード長

問題点 予想される原因 解決策とコメント
予想より短いリード長 DNAサンプルの不要な断片化 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。

1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。

2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 DNA gel2 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。

3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。

利用できないポアの割合が多い場合

問題点 予想される原因 解決策とコメント
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています)

image2022-3-25 10-43-25 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。
サンプル内に不純物が含まれている 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合:

1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は
2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。

Inactiveのポアの割合が高い

問題点 予想される原因 解決策とコメント
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 気泡がフローセルに混入した。 フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。
利用できないポアの割合が多い場合 サンプルDNAに含まれる不純物 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。

1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。
2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。
3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。
利用できないポアの割合が多い場合 サンプル内に不純物が含まれている 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。

Reduction in sequencing speed and q-score later into the run

Observation Possible cause Comments and actions
Reduction in sequencing speed and q-score later into the run For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell.

温度変動

問題点 予想される原因 解決策とコメント
温度変動 フローセルとデバイスの接続が途切れている。 フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。

目標温度に到達しない場合

問題点 予想される原因 解決策とコメント
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 3/10/2023

Document options

MinION