Ligation sequencing gDNA V14 — whole genome amplification (SQK-LSK114)
- Home
- Documentation
- Ligation sequencing gDNA V14 — whole genome amplification (SQK-LSK114)
MinION: Protocol
Ligation sequencing gDNA V14 — whole genome amplification (SQK-LSK114) V WAL_9192_v114_revF_12Dec2024
- This protocol uses genomic DNA
- Very low input requirements (e.g. single cells)
- Multiple displacement amplification (MDA)
- Compatible with R10.4.1 flow cells
For Research Use Only
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 3. Whole genome amplification
- 4. DNA repair and end-prep
- 5. Adapter ligation and clean-up
- 6. MinIONおよびGridIONフローセルのプライミングとローディング
Sequencing and data analysis
Troubleshooting
概要
- This protocol uses genomic DNA
- Very low input requirements (e.g. single cells)
- Multiple displacement amplification (MDA)
- Compatible with R10.4.1 flow cells
For Research Use Only
1. Overview of the protocol
Introduction to the whole genome amplification protocol
This protocol describes how to carry out whole genome amplification (WGA) of genomic DNA using the Ligation Sequencing Kit (SQK-LSK114) and the QIAGEN REPLI-g Midi kit.
Please note, the whole genome amplification step described in this protocol is based off the methods described in the REPLI-g® Mini/Midi Handbook. Please refer to the QIAGEN documentation for additional information.
This protocol uses the multiple displacement amplification (MDA) method with the QIAGEN kit to amplify as little as 50 pg of bacterial DNA to yield up to 40 ug DNA. T7 Endonuclease I treatment is performed to resolve the hyperbranched structure of the WGA product and to improve read quality (Qscore) and flow cell output. It is important to note, however, that by using this method some amplification bias can be introduced in the MDA reaction.
Please note, using this protocol will result in shorter fragment lengths and lower flow cell output than preparing a DNA library using the standard Ligation Sequencing DNA V14 protocol.
Please refer to our Sequencing products of multiple displacement amplification (MDA) know-how document for more information on the available methods.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Library preparation
You will need to:
- Amplify the genomic DNA using random hexamer primers
- Digest the amplified DNA with T7 Endonuclease I to remove branching, and size-select for longer fragments using AMPure XP beads
- Prepare the DNA ends for adapter attachment
- Attach sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell
Sequencing and analysis
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Start the EPI2ME software and select a workflow for further analysis (this step is optional)
Increasing flow cell output with PCR amplification
In instances where flow cell output is reduced when sequencing the products of MDA using the ligation-based protocol (<10 Gb from a MinION flow cell), we have found that performing a PCR amplification using the Rapid PCR Barcoding Kit 24 V14 (SQK-RPB114.24) can recover flow cell output.
We recommend taking 5 ng of the MDA amplified sample from the whole genome amplification step described in this protocol and using it as input for the Rapid sequencing DNA - PCR Barcoding Kit 24 V14 (SQK-RPB114.24) protocol to perform additional PCR amplification.
Please note, amplification bias could potentially be exacerbated with additional PCR, and some GC-bias can be introduced, leading to a slight reduction in coverage at the extremes of GC-content.
For more information refer to the info sheet: Sequencing products of multiple displacement amplification (MDA).
重要
This protocol was developed using E. coli gDNA. If using a different type of sample, please refer to the QIAGEN protocol for advice on how to modify the sample prep accordingly.
重要
Compatibility of this protocol
This protocol should only be used in combination with:
- Ligation Sequencing Kit V14 (SQK-LSK114)
- Control Expansion (EXP-CTL001)
- R10.4.1 flow cells (FLO-MIN114)
- Flow Cell Wash Kit (EXP-WSH004)
- MinION Mk1B - MinION Mk1B IT requirements document
- MinION Mk1C - MinION Mk1C IT requirements document
- MinION Mk1D - MinION Mk1D IT requirements document
- GridION - GridION IT requirements document
2. Equipment and consumables
材料
- 50 pg high molecular weight genomic DNA
- Ligation Sequencing Kit V14 (SQK-LSK114)
- REPLI-g® Single Cell Kit (QIAGEN, cat # 150343)
消耗品
- MinionとGridIONのFlow Cell
- Agencourt AMPure XP beads (Beckman Coulter, A63881)
- NEBNext® Companion Module v2、Oxford Nanopore Technologies® Ligation Sequencing用 (NEB, E7672S or E7672L)
- Salt-T4® DNA Ligase (NEB, M0467)
- Covaris g-TUBE
- 2 ml Eppendorf DNA LoBind tubes
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml 薄壁のPCRチューブ
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- ヌクレアーゼフリー水で用事調整した 80% エタノール溶液
- T7 Endonuclease I (NEB, cat # M0302)
- TE buffer: 10 mM Tris (pH 8.0), 0.1 mM EDTA
- PEG 8000, 50% w/v (Rigaku Reagents, 25322-68-3)
- 0.5 M EDTA, pH 8 (Thermo Scientific, R1021)
- 5 M NaCl (Sigma, 71386)
- 1 M Tris-HCl pH 8.0 (Thermo Scientific, 15893661)
- Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
装置
- MinIONまたは、GridIONデバイス
- MinIONとGridIONのFlow Cell ライトシールド
- Hula mixer(緩やかに回転するミキサー)
- 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
- 小型遠心機
- ボルテックスミキサー
- Heating block at 37°C capable of taking 1.5 ml tubes
- サーマルサイクラー
- アイスバケツ(氷入り)
- タイマー
- P1000 ピペット及びチップ
- P200 ピペットとチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- P2 ピペットとチップ
- Qubit蛍光光度計(またはQCチェックのための同等品)
オプション装置
- Standard gel electrophoresis equipment
- Agilent Bioanalyzer (or equivalent)
- Eppendorf 5424 centrifuge (or equivalent)
For this protocol, you will need 50 pg high molecular weight genomic DNA.
インプットDNA
インプットDNAのQC方法
インプットDNAの量と品質の要件を満たすことが重要です。DNAの使用量が少なすぎたり多すぎたり、あるいは品質の低いDNA(例としてDNAが非常に断片化されていたり、RNAや化学汚染物質が含まれている場合など)を使用すると、ライブラリーの調製に影響を及ぼす可能性があります。
DNAサンプルの品質管理の方法については、Input DNA/RNA QC protocolのプロトコルをご覧ください。
コンタミネーション
DNAの抽出する方法によっては、精製DNAに特定の化学汚染物質が残留する可能性があり、ライブラリ調製の効率やシークエンシングの品質に影響を及ぼす可能性があります。コンタミネーションについての詳細は、コミュニティーの Contaminants page をご覧ください。
Oxford Nanopore Technologies® Ligation Sequencing用のNEBNext® Companion Module v2
NEBNext® Companion Module v2 for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7672S or E7672L), を購入されることをお勧めします。この商品にはLigation Sequencing Kitで使用するために必要なすべてのNEB試薬が含まれています。
旧バージョンのNEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L)と互換性がありますが、新しい「モジュールv2」では、FFPEv2 DNA Repair BufferとSalt-T4 DNA Ligaseにより、より効率的なdA-tailingとligationが可能になりました。v2モジュールを使用すると、サンプルあたりのコストを削減できます。
(注: アンプリコンのプロトコールについては、NEBNext FFPE DNA Repair Mixをお買い求めいただくことも可能ですが、試薬を別途でお買い求めいただく方がコスト的に有利です。
サードパーティー試薬
このプロトコールで使用されているすべてのサードパーティー試薬は、当社が検証し、使用を推奨しているものです。Oxford Nanopore Technologiesでは、それ以外の試薬を用いたテストは行っていません。
すべてのサードパーティ製試薬については、製造元の指示に従って使用の準備をすることをお勧めします。
フローセルのチェックをしてください
シークエンシング実験を開始する前に、フローセルのポアの数を確認することを強くお勧めします。このフローセルの確認は、MinION/GridION/PromethIONの場合は代理店への到着から12週間以内に行ってください。またはFlongle Flow Cellの場合は代理店への到着から4週間以内に行う必要があります。Oxford Nanopore Technologiesは、フローセルチェックの実施から2日以内に結果が報告され、推奨される保管方法に従っていた場合に、以下の表に記載されているナノポアの有効数に満たさない場合には、フローセルを交換します。 フローセルのチェックを行うには、Flow Cell Check documentの指示に従ってください。
Flow cell | 保証する最小有効ポア数(以下の数未満のフローセルが交換対象となります) |
---|---|
Flongle Flow Cell | 50 |
MinION/GridION Flow Cell | 800 |
PromethION Flow Cell | 5000 |
重要
AMPure XP Beads
Within the Ligation Sequencing Kit 24 V14 (SQK-LSK114), AMPure XP Beads (AXP) are supplied at the volume needed to complete the "DNA repair and end-prep" and "adapter ligation and clean-up" steps of the protocol.
However, extra AMPure XP Beads are required for the "whole genome amplification" step of the protocol.
重要
ライゲーションアダプター(LA)のライゲーション効率を高めるため、NEBNext Quick Ligation Module に付属しているリガーゼバッファーではなく、Ligation Sequencing Kit V14 に付属のライゲーションバッファー(LNB)のご使用を強くお勧めします。
重要
本キットおよびプロトコールに含まれるライゲーションアダプター(LA)は、他のシークエンシングアダプターとの互換性はありません。
Ligation Sequencing Kit V14 (SQK-LSK114) のコンテンツ
(注: 現在のキットの容器を変更しています。今までは実験毎に使い捨てのシングルユーズチューブを使用していましたが、バッファー単位のボトル容器に変更しています。
シングルユースチューブの場合:
ボトル容器の場合:
(注: 本製品には、Beckman Coulter、Inc.製のAMPure XP試薬が含まれており、試薬の安定性を損なうことなくキットと共に-20 ° Cで保存することができます。
(注: DNA Control Sample(DCS)は3.6kbのアンプリコンで、Lambda genomeの3'末端をマッピングしたプレップコントロールです。
3. Whole genome amplification
材料
- 50 pg high molecular weight genomic DNA
- REPLI-g® Single Cell Kit (QIAGEN, cat # 150343)
消耗品
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- 2 ml Eppendorf DNA LoBind tubes
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml 薄壁のPCRチューブ
- T7 Endonuclease I (NEB, cat # M0302)
- Agencourt AMPure XP beads (Beckman Coulter, A63881)
- nuclease-free waterで調整した 80% エタノール溶液
- TE buffer: 10 mM Tris (pH 8.0), 0.1 mM EDTA
- PEG 8000, 50% w/v (Rigaku Reagents, 25322-68-3)
- 0.5 M EDTA, pH 8 (Thermo Scientific, R1021)
- 5 M NaCl (Sigma, 71386)
- 1 M Tris-HCl pH 8.0 (Thermo Scientific, 15893661)
装置
- P1000 pipette and tips
- P200 pipette and tips
- P100 pipette and tips
- P10 ピペットとチップ
- P2 pipette and tips
- Thermal cycler
- Hula mixer(緩やかに回転するミキサー)
- 1.5 mlエッペンドルフチューブに最適のマグネット式ラック
- アイスバケツ(氷入り)
- Qubit蛍光光度計(またはQCチェックのための同等品)
Thaw the REPLI-g sc DNA Polymerase on ice, mix well by pipetting and spin down. Store on ice until ready to use.
Prepare the DNA in nuclease-free water.
- Transfer 50 pg genomic DNA into a clean 0.2 ml thin-walled PCR tube.
- Adjust the volume to 4 μl with nuclease-free water.
- Mix thoroughly by inversion and gently flicking to avoiding unwanted shearing.
- Spin down briefly in a microfuge.
Reconstitute the Buffer DLB from the QIAGEN REPLI-g Single Cell kit as follows:
- Add 500 µl of nuclease-free water to the Buffer DLB tube.
- Thoroughly mix by vortexing and briefly spin down.
Note: According to the manufacturers, the reconstituted Buffer DLB can be stored for up to 6 months at -20°C.
In a clean 1.5 ml Eppendorf DNA LoBind tube, prepare sufficient Buffer D2 for the total number of reactions required as follows:
Reagent | Volume for 4 samples | Volume for 12 samples | Volume for 24 samples |
---|---|---|---|
DTT, 1M | 1 µl | 3 µl | 6 µl |
Reconstituted Buffer DLB | 11 µl | 33 µl | 66 µl |
Total | 12 µl | 36 µl | 72 µl |
Note: The REPLI-g® Mini/Midi Handbook recommends preparing a stock of Buffer D2 minimise risk of error when pipetting small volumes. According to the manufacturers, the prepared Buffer D2 can be stored for up to 3 months at -20°C.
Add 3 µl of prepared Buffer D2 to the gDNA input sample in the 0.2 ml thin-walled PCR tube.
Mix gently by flicking the tube and spin down.
Incubate the reaction at 65°C for 10 minutes.
Add 3 µl of of Stop Solution to the denatured DNA sample tube. Mix by flicking the tube, briefly spin down and place on ice.
In a clean 1.5 ml Eppendorf DNA LoBind tube placed on ice, prepare the master mix as follows:
Pipette mix 10-20 times between each addition.
Reagent | Volume |
---|---|
Nuclease-free water | 9 µl |
REPLI-g sc Reaction Buffer | 29 µl |
REPLI-g sc DNA Polymerase | 2 µl |
Total | 40 µl |
Mix thoroughly by pipetting and briefly spin down before storing the master mix on ice.
Combine the following reagents in the same 0.2 ml thin-walled PCR tube containing the sample:
Reagent | Volume |
---|---|
Denatured DNA sample (from previous step) | 10 µl |
Prepared master mix | 40 µl |
Total | 50 µl |
Mix gently by flicking the tube and spin down.
Incubate the reaction for 2 hours at 30°C and 3 minutes at 65°C using a thermal cycler.
Transfer the sample to a clean 1.5 ml Eppendorf DNA LoBind tube.
Resuspend the AMPure XP beads by vortexing.
Add 90 µl of resuspended AMPure XP beads to the amplification reaction and mix by pipetting.
Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
Prepare 500 μl of 80% ethanol in nuclease-free water.
サンプルをスピンダウンし、マグネット上でペレット化します。チューブをマグネットの上に置き、無色透明になったら上清をピペットで取り除きます。
チューブをマグネットの上に置き、ペレットを乱さないように、200 µl の新しく調製した 80% エタノールでビーズを洗浄します。
スピンダウンし、チューブをマグネットの上に戻します。残ったエタノールをピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。
Remove the tube from the magnetic rack and resuspend pellet in 100 µl nuclease-free water. Incubate for 2 minutes at room temperature.
Pellet the beads on a magnet until the eluate is clear and colourless.
Remove and retain 100 µl of eluate in a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Quantify 1 µl of the eluted sample using a Qubit fluorometer.
Prepare your amplified DNA sample as follows:
- Transfer 1.5 µg of amplified DNA into a clean 0.2 ml thin-walled PCR tube.
- Adjust the volume to 24 μl with nuclease-free water.
- Mix thoroughly by inversion and gently flicking to avoiding unwanted shearing.
- Spin down briefly in a microfuge.
Prepare the following reaction in the 0.2 ml thin-walled PCR tube containing the sample by adding the reagents in the following order:
Reagent | Volume |
---|---|
1.5 µg of amplified DNA (from previous step) | 24 µl |
NEBuffer 2 | 3 µl |
T7 Endonuclease I | 3 µl |
Total | 30 µl |
反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。
Incubate the reaction for 60 minutes at 37°C.
Prepare the Custom buffer with beads as follows:
- Prepare the Custom buffer mix in a clean 2 ml Eppendorf DNA LoBind tube:
Reagent | Volume |
---|---|
1 M Tris-HCl | 20 μl |
0.5 M EDTA pH 8 | 4 μl |
5 M NaCl | 640 μl |
PEG 8000 | 440 μl |
Nuclease-free water | 888 μl |
Total | 1992 μl |
- Mix the Custom buffer thoroughly by pipetting.
- Resuspend the AMPure XP beads by vortexing.
- Prepare two 1.5 ml Eppendorf DNA LoBind tubes to contain 1 ml of resuspended AMPure XP beads each.
- Pellet the beads in both tubes on a magnet. Keeping the tubes on the magnet, pipette off the supernatants.
- Remove both tubes from the magnet and resuspend the beads in each tube with 1 ml of nuclease-free water. Return the tubes to the magnet and allow the beads to pellet. Pipette off the water and discard.
- Repeat the previous step.
- Spin down and place the tubes back on the magnet. Pipette off any residual water.
- Resuspend both pellets in 200 ul of Custom Buffer. Transfer the full volume of both tubes of resuspended beads to the remaining Custom buffer in the 2 ml Eppendorf LoBind DNA tube.
- Mix the Custom buffer with beads thoroughly by pipetting.
Prepare the amplified DNA sample as follows:
- Transfer the 30 µl of amplified DNA sample into a clean 1.5 ml Eppendorf DNA LoBind tube.
- Adjust the volume to 50 μl with TE buffer, pH 8.
- Mix thoroughly by inversion and gently flicking to avoiding unwanted shearing.
- Spin down briefly in a microfuge.
Add 35 µl of the Custom buffer with beads to the DNA sample, and mix by flicking the tube.
Note: Thoroughly mix the Custom buffer by pipetting prior to use to ensure the beads are fully resuspended.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature. This step may be extended to 20 minutes if a slightly higher DNA recovery yield is desired.
Prepare 500 μl of 80% ethanol in nuclease-free water.
チューブをスピンダウンした後、マグネットラック上で、上清が無色透明になるまで置きます。チューブを磁石の上に置いたまま、上清をピペットで取り除いていきます。ピペットを使用してエタノールを除去し 、 廃棄してください。
チューブをマグネットの上に置き、ペレットを乱さないように、200 µl の新しく調製した 80% エタノールでビーズを洗浄します。
前のステップを繰り返します。
スピンダウンし、チューブをマグネットの上に戻します。残った上清をピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。
Remove the tube from the magnetic rack and resuspend pellet in 49 µl nuclease-free water. Incubate for 1 minute at 50°C, and then for 5 minutes at room temperature.
Pellet the beads on a magnet until the eluate is clear and colourless.
Remove and retain 49 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Quantify 1 µl of DNA using a Qubit fluorometer - recovery aim ~700 ng.
最終ステップ
Take forward approximately 700 ng of DNA in 48 µl into the DNA repair and end-prep step. However, at this point it is also possible to store the sample at 4°C overnight.
ヒント
Increasing flow cell output with PCR amplification using the Rapid PCR Barcoding Kit 24 V14 (SQK-RPB114.24)
If you have obtained low DNA recovery following the whole genome amplification step, or have previously performed the experiment and observed low flow cell output, please consider performing a PCR amplification of your MDA products using the Rapid PCR Barcoding Kit 24 V14 (SQK-RPB114.24).
We recommend taking 5 ng of the MDA amplified sample from this step of the protocol and using it as the input for the Rapid sequencing DNA - PCR Barcoding Kit 24 V14 (SQK-RPB114.24) protocol.
4. DNA repair and end-prep
材料
- Amplified DNA in 48 µl nuclease-free water
- AMPure XP Beads (AXP)
消耗品
- NEBNext® FFPE DNA Repair Mix (M6630) from the NEBNext® Companion Module v2 (NEB, E7672S or E7672L)
- NEBNext® Ultra II End Prep Enzyme Mix (E7646) from the NEBNext® Companion Module v2 (NEB, E7672S or E7672L)
- NEBNext® FFPE DNA Repair Buffer v2 (E7363) from the NEBNext® Companion Module v2 (NEB, E7672S or E7672L)
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- ヌクレアーゼフリー水で用事調整した 80% エタノール溶液
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- 0.2 ml 薄壁のPCRチューブ
- 1.5 ml Eppendorf DNA LoBind tubes
装置
- P1000 ピペット及びチップ
- P100 ピペットとチップ
- P10 ピペットとチップ
- 小型遠心機
- サーマルサイクラー
- Hula mixer(緩やかに回転するミキサー)
- マグネットラック
- アイスバケツ(氷入り)
オプション装置
- Qubit蛍光光度計(またはQCチェックのための同等品)
ヒント
NEB試薬がすべて含まれていまれている Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7672Sまたは、 E7672L)用のNEBNext® Companion Module v2)を使用する事をお勧めします。
旧バージョンのNEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L)も使用可能です。しかし、上記で推奨したv2モジュールを使用する事でより効率的なdA-tailingとligationを提供できます。
CHECKPOINT
フローセルのチェックを行ってください。
ライブラリー調製を開始する前にフローセルチェックを行い、良好なシークエンスランに十分なポアを持つフローセルを使用することをお勧めします。
詳細については、MinKNOWプロトコルのflow cell check instructions を参照してください。
NEB試薬を製造元の指示に従って調製し、氷上に置きます。
最適なパフォーマンスを得るために、NEBは以下を推奨しています。
すべての試薬を氷上で解凍します。
試薬チューブをタッピングや転倒混和にてよく混ぜてください。
(注: FFPE DNA Repair MixまたはUltra II End Prep Enzyme Mixをボルテックスしないでください。毎日、初めて開封する前に、必ずチューブをスピンダウンしてください。
FFPE DNA Repair Buffer v2、または NEBNext FFPE DNA Repair Buffer と Ultra II End Prep Reaction Buffer をボルテックスし、よく混合してください。
(注: これらのバッファーは白色の沈殿を含むことがあります。このような場合には混合物を室温で戻し、バッファー液を数回上下にピペットで沈殿物を分解してください。その後、素早くチューブをボルテックスして混合させてください。FFPE DNA Repair Bufferは黄色味を帯びることがありますが、問題はありません。
In a 0.2 ml thin-walled PCR tube, mix the following:
Between each addition, pipette mix 10-20 times.
Reagent | Volume |
---|---|
Amplified DNA | 48 µl |
NEBNext FFPE DNA Repair Buffer v2 | 7 µl |
NEBNext FFPE DNA Repair Mix | 2 µl |
Ultra II End-prep Enzyme Mix | 3 µl |
Total | 60 µl |
If using the previous version of the NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L):
Between each addition, pipette mix 10-20 times.
Reagent | Volume |
---|---|
Amplified DNA | 48 µl |
NEBNext FFPE DNA Repair Buffer | 3.5 µl |
NEBNext FFPE DNA Repair Mix | 2 µl |
Ultra II End-prep Reaction Buffer | 3.5 µl |
Ultra II End-prep Enzyme Mix | 3 µl |
Total | 60 µl |
反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。
サーマルサイクラーを使用して、初めに20℃で5分間インキュベートした後に、65℃で5分間インキュベートしてください。
AMPure XP ビーズ(AXP)をボルテックスで懸濁します。
DNA サンプルを清潔な 1.5 ml エッペンドルフ DNA LoBind チューブに移してください。
再懸濁したAMPure XP Beads (AXP) 60 µlをエンドプレップ反応に加え、チューブをフリッ クして混和します。
Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。
新鮮な80%エタノールをヌクレアーゼフリー水で500μl用意します。
チューブをスピンダウンした後、マグネットラック上で、上清が無色透明になるまで置きます。チューブを磁石の上に置いたまま、上清をピペットで取り除いていきます。ピペットを使用してエタノールを除去し 、 廃棄してください。
チューブをマグネットの上に置き、ペレットを乱さないように、200 µl の新しく調製した 80% エタノールでビーズを洗浄します。
前のステップを繰り返します。
スピンダウンし、チューブをマグネットの上に戻します。残ったエタノールをピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。
チューブをマグネットラックから取り出し、ペレットを61μlのヌクレアーゼフリー 水に懸濁します。室温で2分間インキュベートします。
溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。
61μlの溶出液を除去し、清潔な1.5mlエッペンドルフDNA LoBindチューブに保持します。
CHECKPOINT
Qubit蛍光光度計を使用して、溶出したサンプル1 µlを定量します。
最終ステップ
エンドプレップと修復されたDNAをアダプターライゲーションのステップに進めます。なお、この時点でサンプルを4℃で一晩保存することも可能です。
5. Adapter ligation and clean-up
材料
- Ligation Adapter (LA)
- Ligation Buffer (LNB)
- Short Fragment Buffer (SFB)
- AMPure XP Beads (AXP)
- Elution Buffer (EB)
消耗品
- Salt-T4® DNA Ligase (NEB, M0467)
- 1.5 ml Eppendorf DNA LoBind tubes
- Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
- Qubit™ Assay Tubes (Invitrogen, Q32856)
装置
- マグネットラック
- 小型遠心機
- ボルテックスミキサー
- P1000 ピペット及びチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- Qubit蛍光光度計(またはQCチェックのための同等品)
ヒント
Salt-T4® DNA Ligase (NEB, M0467) の使用を推奨します。
Salt-T4® DNA Ligase(NEB, M0467)は別途購入するか、Oxford Nanopore Technologies® Ligation Sequencing用のNEBNext® Companion Module v2(カタログ番号E7672SまたはE7672L)に含まれています。
旧バージョンのNEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L)も使用することが出来ます。しかし、上記で推奨したv2モジュールを使用する事でより効率的なdA-tailingとligationを提供することが出来ます。
重要
推奨の他社製リガーゼ(ligase)には専用のバッファーが付属していますが、Ligation Sequencing Kitに付属のLigation Buffer (LNB)を使用した方が、Ligation Adapter (LA)のライゲーション効率が高くなります。
Ligation Adapter (LA) とSalt-T4® DNA Ligaseをスピンダウンし、氷上に置きます。
ライゲーションバッファー(LNB)を室温で融解し、スピンダウンしてピペッティングで混合します。粘性が高い為、この緩衝液をボルテックスするのは効果的ではないです。解凍して混ぜたら、すぐに氷の上に置いてください。
溶出バッファー(EB)を室温で融解し、ボルテックスで混合します。その後、スピンダウンして氷の上に置きます。
Thaw the Short Fragment Buffer (SFB) at room temperature and mix by vortexing. Then spin down and place on ice.
1.5mlのエッペンドルフDNA LoBindチューブに、以下の順序で混合してください。
それぞれの添加の間に、10~20回ピペッティングして混ぜてください。
試薬 | 量 |
---|---|
前ステップのDNA | 60 µl |
Ligation Adapter (LA) | 5 µl |
Ligation Buffer (LNB) | 25 µl |
Salt-T4® DNA Ligase | 10 µl |
合計 | 100 µl |
反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。
反応液を室温で10分間インキュベートします。
Resuspend the AMPure XP beads (AXP) by vortexing.
再懸濁したAMPure XP Beads (AXP) 40 µlを加え、チューブをフリッ クして混和します。
Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。
サンプルをスピンダウンし、マグネット上でペレット化します。チューブをマグネットの上に置き、無色透明になったら上清をピペットで取り除きます。
Wash the beads by adding 250 μl of Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
Note: Take care when removing the supernatant, the viscosity of the buffer can contribute to loss of beads from the pellet.
前のステップを繰り返します。
スピンダウンし、チューブをマグネットの上に戻します。残った上清をピペットで取り除きます。ペレットを30 秒間程乾かします。 ただし、 ペレットにひびが入るまでは乾燥させないでください。
チューブをマグネットラックから取り出し、ペレットを15 µlの溶出バッファー(EB)に懸濁します。スピンダウンし、室温で10分間インキュベートして下さい。高分子量のDNAの場合は、37℃でインキュベートすると長い断片の回収率が向上します。
溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。
DNA ライブラリーを含む 15 µl の溶出液を取り出し、清潔な 1.5 ml Eppendorf DNA LoBind tube に移し替えます。
ペレット化したビーズを廃棄します。
CHECKPOINT
Qubit蛍光光度計を使用して、溶出したサンプル1 µlを定量します。
Depending on your DNA library fragment size, prepare your final library in 12 µl of Elution Buffer (EB).
Fragment library length | Flow cell loading amount |
---|---|
Very short (<1 kb) | 100 fmol |
Short (1-10 kb) | 35–50 fmol |
Long (>10 kb) | 300 ng |
Note: If the library yields are below the input recommendations, load the entire library.
If required, we recommend using a mass to mol calculator such as the NEB calculator.
最終ステップ
調製されたライブラリーは、フローセルへのロードに使用されます。ライブラリーは、ロードの準備ができるまで氷上、または4℃で保存して下さい。
ヒント
推奨のライブラリー保存方法
短期間の保存や繰り返し使用する場合は__(例 フローセルをウオッシュして再度ロードする場合)は、ライブラリーをEppendorf DNA LoBindチューブに入れ、__4℃で保存 することをお勧めします。 __3か月以上の長期保存の場合は、____ライブラリーをEppendorf DNA LoBindチューブに -80 ° Cで保存 することをお勧めします。
6. MinIONおよびGridIONフローセルのプライミングとローディング
材料
- Flow Cell Flush (FCF)
- Flow Cell Tether (FCT)
- Library Solution (LIS)
- Library Beads (LIB)
- Sequencing Buffer (SB)
消耗品
- MinionとGridIONのFlow Cell
- 1.5 ml Eppendorf DNA LoBind tubes
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
装置
- MinIONかGridION のデバイス
- MinIONとGridIONのFlow Cell ライトシールド
- P1000 ピペット及びチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
重要
注意:本キットはR10.4.1フローセル(FLO-MIN114)のみに対応しています。
Sequencing Buffer(SB)、Library Beads(LIB)またはLibrary Solution(LISを使用する場合のみ)、Flow Cell Tether(FCT)およびFlow Cell Flush(FCF)を室温で融解してから、ボルテックスで混合します。その後、スピンダウンして氷上で保存します。
重要
MinION R10.4.1フローセル(FLO-MIN114)での最適なシークエンス性能と出力向上のために、フローセルのプライミングミックスに最終濃度0.2 mg/mlでBovine Serum Albumin (BSA) を添加することを推奨します。
(注: その他のアルブミンの種類(組換えヒト血清アルブミンなど)の使用は推奨しません。
BSA入りのフローセルプライミングミックスを調製するには、Flow Cell Flush (FCF)とFlow Cell Tether(FCT)を以下の指示に従って組み合わせます。室温でピペッティングして混合します。
(注: キットの容器を変更している最中です。今までは実験の後に使い捨てるシングルユーズチューブを使用していましたが、バッファー単位のボトル容器に変更しています。お手持ちのキットの使用方法に従ってください。
シングルユースチューブの場合: 50 mg/mlのウシ血清アルブミン(BSA)5 µlとFlow Cell Tether (FCT)30 µlをFlow Cell Flush (FCF)チューブに直接加えます。
ボトル容器の場合:: フローセルの数に適したチューブに以下の試薬を組み合わせます。
試薬 | 1フローセルあたりの容量 |
---|---|
Flow Cell Flush (FCF) | 1,170 µl |
Bovine Serum Albumin (BSA) at 50 mg/ml | 5 µl |
Flow Cell Tether (FCT) | 30 µl |
合計 | 1,205 µl |
MinIONまたはGridIONデバイスの蓋を開け、フローセルをクリップの下にスライドさせます。 フローセルをしっかりと押さえ、サーマルプレートと電気接触が密着しているかを確認してください。
オプショナルステップ
ライブラリーをロードする前にフローセルチェックを行い、使用可能なポアの数を把握して下さい。
フローセルが以前にチェックされている場合は、このステップを省略できます。
詳細については、MinKNOWプロトコルのフローセルチェックの手順 flow cell check instructionsを参照してください。
フローセルのプライミングポートカバーを時計方向にスライドさせ、プライミングポートを開きます。
重要
フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。
プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。
- P1000ピペットを200 µ Lに設定して下さい。
- ピペットの先端をプライミングポートに差し込みます。
- 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。
(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。
気泡が混入しないように、プライミングポートからフローセルにプライミングミックスを800µl注入し、 5分間待ちます。この5分間の間に、以下の手順でライブラリーをロードする準備をして下さい。
Library Beads(LIB)の液をピペッティングすることで十分に混合して下さい。
重要
Library Beads(LIB)チューブにはビーズの懸濁液が入っています。このビーズはすぐに沈殿するので、使用直前に混合することが重要です。
ほとんどのシークエンシング実験には、Library Beads (LIB)を使用することをお勧めします。しかし、より粘性の高いライブラリーをご使用の場合はLibrary Solution (LIS)の使用をお勧めします。
新しい1.5mlのEppendorf DNA LoBindチューブにてライブラリーをロードする準備をします。(詳細は以下に記載されています。)
試薬 | 1フローセルあたりの容量 |
---|---|
Sequencing Buffer (SB) | 37.5 µl |
Library Beads (LIB)またはLibrary Solution(LIS)(使用する場合)は、使用直前に混合して下さい。 | 25.5 µl |
DNA library | 12 µl |
合計 | 75 µl |
フローセルのプライミングを完了させます。
- SpotON サンプルポートカバーをゆっくりと持ち上げ、SpotON サンプルポートにアクセスできるようにします。
- 200μlのプライミングミックスをフローセルのプライミングポート(SpotONサンプルポートではありません)に気泡が入らないように注入します。
調製したライブラリーは、ロードする直前にピペッティング混合して下さい。
調製したライブラリー75μlをSpotONサンプルポートからフローセルに滴下します。次の一滴を追加する前に各一滴がポートに入っていることを確認して下さい。
SpotONサンプルポートカバーをゆっくりと元に戻し、バング(カバーの先)がSpotONポートに入ることを確認し、プライミングポートを閉じます。
重要
最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。
ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。
ライトシールドを以下のようにフローセルに設置して下さい。
ライトシールドの先端を慎重にクリップに当てます。 (注: ライトシールドをクリップの下に無理に押し込まないでください。
ライトシールドをフローセルにゆっくりと下ろします。ライトシールドは、フローセルの上部全体を覆うようにSpotONカバーの周囲に取り付けます。
注意
MinIONフローセルライトシールドは、フローセルに固定されていないため、取り付け後の取り扱いには注意が必要です。
最終ステップ
デバイスの蓋を閉め、MinKNOWでシークエンスランをセットします。
7. Data acquisition and basecalling
シークエンスの開始方法
フローセルをロードしたら、MinKNOWでシークエンシングランを開始できます。MinKNOWは、装置、データ収集、リアルタイムベースコールを制御するシークエンスソフトウェアです。 MinKNOWの設定と使用の詳細については、MinKNOW Protocolを参照してください。
MinKNOWは、複数の方法でシークエンスの設定をすることができます。
- シークエンシングデバイスに直接かリモートで接続されているコンピューター。
- GridION、Minion Mk1C、またはPromethion 24/48シークエンシングデバイスで直接使用できます。
シークエンス装置でMinKNOWを使用する方法の詳細については、装置のユーザーマニュアルを参照してください。
MinKNOWでシークエンスランを開始するには、次の手順に従います。
1. スタートページに移動し、 Start sequencing をクリックします。
2. 名前、フローセルの位置、サンプルIDなどの実験の詳細を入力します。
3. キットのページで、ライブラリー調製に使用するシークエンシングキットを選択します。
4. シークエンスランのパラメータの変更を設定(ランオプションの変更など)するか、デフォルト設定のままにします。
(注: シークエンスランの設定時にベースコールがオフになっていた場合には、MinKNOWでポストラン・ベースコールを後日に実行することも出来ます。詳細については、MinKNOW protocolを参照してください。
5. Start をクリックしてシークエンスランを開始します。
シークエンシング後のデータ解析
MinKNOWでシークエンスが終わると、フローセルを再利用または返却ができます。詳しくは、フローセルの再利用と返却のセクションをご覧ください。
シークエンシングとベースコールの後にはデータを解析することができます。 ベースコールおよびベースコール後の解析オプションの詳細については、Data Analysis を参照してください。
ダウンストリーム解析セクションでは、データを解析するためのオプションの概要を説明しています。
8. フローセルの再利用と返却
材料
- Flow Cell Wash Kit (EXP-WSH004)
シークエンス実験終了後、フローセルを再利用する場合は、Flow Cell Wash Kitのプロトコールに従い、洗浄したフローセルを2~8℃で保管してください。
Flow Cell Wash Kit protocolは、Nanoporeコミュニティーで入手できます。
ヒント
運転を停止したらできるだけ早くフローセルをウォッシュすることをお勧めします。しかし、これが不可能な場合はフローセルをデバイスに入れたまま、翌日にウォッシュをして下さい。
または、返送手順に従って、オックスフォード・ナノポアに返送してください。
フローセルの返却方法は hereをご覧ください。
(注: 製品を返却する前に、すべてのフローセルを脱イオン水で洗浄する必要があります。
重要
シークエンシング実験に関して問題が発生した場合や質問がある場合には、このプロトコルのオンライン版にあるトラブルシューティングガイドを参照してください。
9. Downstream analysis
Post-basecalling analysis
There are several options for further analysing your basecalled data:
1. EPI2ME workflows
For in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials and workflows available in EPI2ME. The platform provides a vehicle where workflows deposited in GitHub by our Research and Applications teams can be showcased with descriptive texts, functional bioinformatics code and example data.
2. Research analysis tools
Oxford Nanopore Technologies' Research division has created a number of analysis tools, which are available in the Oxford Nanopore GitHub repository. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.
3. Community-developed analysis tools
If a data analysis method for your research question is not provided in any of the resources above, please refer to the resource centre and search for bioinformatics tools for your application. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.
10. DNA/RNA抽出、およびライブラリ調製時の問題点
以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。
Nanopore Community Support セクションにFAQをご用意しています。
ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。
サンプルの品質が低い
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) | DNA抽出で必要な純度が得られていない | 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。. 追加のSPRIクリーンアップステップの実施を検討して下さい。 |
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) | 抽出中にRNAが分解された | 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。 |
RNAのフラグメントが予想より短い | 抽出中にRNAが分解された | 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。 RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。 |
AMPureビーズクリーンアップ後のDNA回収率が低い
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
低回収率 | AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 | 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。 2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。 |
低回収率 | DNA断片が予想よりも短い | サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 |
エンドプレップ後の収率が低い | 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 | エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。 |
11. Issues during the sequencing run
以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。
Nanopore Community Support セクションにFAQをご用意しています。
ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。
シークエンス開始時のポアがフローセルチェック後よりも少ない場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | ナノポアアレイに気泡が入ってしまった。 | フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。 |
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | フローセルがデバイスに正しく挿入されていない。 | シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。 |
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 | フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。 |
MinKNOWのスクリプトに問題
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
MinKNOW に 「Script failed」と表示されている" | コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。 |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
予想より短いリード長
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
予想より短いリード長 | DNAサンプルの不要な断片化 | 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。 1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。 2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。 3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。 |
利用できないポアの割合が多い場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています) 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。 | サンプル内に不純物が含まれている | 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合: 1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は 2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。 |
Inactiveのポアの割合が高い
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 | 気泡がフローセルに混入した。 | フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。 |
利用できないポアの割合が多い場合 | サンプルDNAに含まれる不純物 | 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。 1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。 2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。 3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。 |
利用できないポアの割合が多い場合 | サンプル内に不純物が含まれている | 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。 |
Reduction in sequencing speed and q-score later into the run
Observation | Possible cause | Comments and actions |
---|---|---|
Reduction in sequencing speed and q-score later into the run | For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). | Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell. |
温度変動
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
温度変動 | フローセルとデバイスの接続が途切れている。 | フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。 |
目標温度に到達しない場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" | 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 | MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。 |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |