Products & Services
Applications

Applications

Nanopore sequencing offers advantages in all areas of research. Our offering includes DNA sequencing, as well as RNA and gene expression analysis and future technology for analysing proteins.

Learn about applications
View all Applications
Resources
News Explore
Contact
Resource Centre
Back

Telomere-to-telomere assembly of a complete human X chromosome

Publication

Date: 14th July 2020 | Source: Nature

Authors: Karen H. Miga, Sergey Koren, Arang Rhie, Mitchell R. Vollger, Ariel Gershman, Andrey Bzikadze, Shelise Brooks, Edmund Howe, David Porubsky, Glennis A. Logsdon, Valerie A. Schneider, Tamara Potapova, Jonathan Wood, William Chow, Joel Armstrong, Jeanne Fredrickson, Evgenia Pak, Kristof Tigyi, Milinn Kremitzki, Christopher Markovic, Valerie Maduro, Amalia Dutra, Gerard G. Bouffard, Alexander M. Chang, Nancy F. Hansen, Amy B. Wilfert, Françoise Thibaud-Nissen, Anthony D. Schmitt, Jon-Matthew Belton, Siddarth Selvaraj, Megan Y. Dennis, Daniela C. Soto, Ruta Sahasrabudhe, Gulhan Kaya, Josh Quick, Nicholas J. Loman, Nadine Holmes, Matthew Loose, Urvashi Surti, Rosa ana Risques, Tina A. Graves Lindsay, Robert Fulton, Ira Hall, Benedict Paten, Kerstin Howe, Winston Timp, Alice Young, James C. Mullikin, Pavel A. Pevzner, Jennifer L. Gerton, Beth A. Sullivan, Evan E. Eichler, Adam M. Phillippy.

After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no one chromosome has been finished end to end, and hundreds of unresolved gaps persist.

Here we present a de novo human genome assembly that surpasses the continuity of GRCh38, along with the first gapless, telomere-to-telomere assembly of a human chromosome.

This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation.

Focusing our efforts on the human X chromosome, we reconstructed the ~3.1 megabase centromeric satellite DNA array and closed all 29 remaining gaps in the current reference, including new sequence from the human pseudoautosomal regions and cancer-testis ampliconic gene families (CT-X and GAGE). These novel sequences will be integrated into future human reference genome releases. Additionally, a complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays for the first time.

Our results demonstrate that finishing the entire human genome is now within reach and the data presented here will enable ongoing efforts to complete the remaining human chromosomes.

Read the full text Watch Karen's London Calling 2019 talk

Recommended for you

Open a chat to talk to our sales team
FAQs

FAQs

Search