Main menu

Rampant prophage movement among transient competitors drives rapid adaptation during infection


Interactions between bacteria, their close competitors, and viral parasites are common in infections but understanding of these eco-evolutionary dynamics is limited. Most examples of adaptations caused by phage lysogeny are through the acquisition of new genes. However, integrated prophages can also insert into functional genes and impart a fitness benefit by disrupting their expression, a process called active lysogeny.

Here, we show that active lysogeny can fuel rapid, parallel adaptations in establishing a chronic infection. These recombination events repeatedly disrupted genes encoding global regulators, leading to increased cyclic-di-GMP levels and elevated biofilm production. The implications of prophage-mediated adaptation are broad, as even transient members of microbial communities can alter the course of evolution and generate persistent phenotypes associated with poor clinical outcomes.

Authors: Christopher W. Marshall, Erin S. Gloag, Christina Lim,Daniel J. Wozniak, Vaughn S. Cooper

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag