Main menu

A Python-based optimization framework for high-performance genomics


Exponentially-growing next-generation sequencing data requires high-performance tools and algorithms. Nevertheless, the implementation of high-performance computational genomics software is inaccessible to many scientists because it requires extensive knowledge of low-level software optimization techniques, forcing scientists to resort to high-level software alternatives that are less efficient.

Here, we introduce Seq—a Python-based optimization framework that combines the power and usability of high-level languages like Python with the performance of low-level languages like C or C++. Seq allows for shorter, simpler code, is readily usable by a novice programmer, and obtains significant performance improvements over existing languages and frameworks.

We showcase and evaluate Seq by implementing seven standard, widely-used applications from all stages of the genomics analysis pipeline, including genome index construction, finding maximal exact matches, long-read alignment and haplotype phasing, and demonstrate its implementations are up to an order of magnitude faster than existing hand-optimized implementations, with just a fraction of the code.

By enabling researchers of all backgrounds to easily implement high-performance analysis tools, Seq further opens the door to the democratization and scalability of computational genomics.

Authors: Ariya Shajii, Ibrahim Numanagić, Alexander T. Leighton, Haley Greenyer, Saman Amarasinghe, Bonnie Berger

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag