Products
Services
Applications
Resources Get started
Resource Centre
Back

Picky comprehensively detects high-resolution structural variants in nanopore long reads

Publication

Date: 30th April 2018 | Source: Nature Methods

Authors: Liang Gong, Chee-Hong Wong, Wei-Chung Cheng, Harianto Tjong, Francesca Menghi, Chew Yee Ngan, Edison T. Liu, Chia-Lin Wei.

Acquired genomic structural variants (SVs) are major hallmarks of cancer genomes, but they are challenging to reconstruct from short-read sequencing data. Here we exploited the long reads of the nanopore platform using our customized pipeline, Picky (https://github.com/TheJacksonLaboratory/Picky), to reveal SVs of diverse architecture in a breast cancer model. We identified the full spectrum of SVs with superior specificity and sensitivity relative to short-read analyses, and uncovered repetitive DNA as the major source of variation. Examination of genome-wide breakpoints at nucleotide resolution uncovered micro-insertions as the common structural features associated with SVs. Breakpoint density across the genome is associated with the propensity for interchromosomal connectivity and was found to be enriched in promoters and transcribed regions of the genome. Furthermore, we observed an over-representation of reciprocal translocations from chromosomal double-crossovers through phased SVs. We demonstrate that Picky analysis is an effective tool for comprehensive detection of SVs in cancer genomes from long-read data.

Read the full text

Recommended for you

Open a chat to talk to our sales team
FAQs

FAQs

Search