Main menu

Nucleotide-resolution bacterial pan-genomics with reference graphs


Bacterial genomes follow a U-shaped frequency distribution whereby most genomic loci are either rare (accessory) or common (core) - the alignable fraction of two genomes from a single species might be only 50%. Standard tools therefore analyse mutations only in the core genome, ignoring accessory mutations.

We present a novel pan-genome graph structure and algorithms implemented in the software pandora, which approximates a sequenced genome as a recombinant of reference genomes, detects novel variation and then pan-genotypes multiple samples.

Constructing a reference graph from 578 E. coli genomes, we analyse a diverse set of 20 E. coli isolates. We show, for rare variants, pandora recovers at least 13k more SNPs than single-reference based tools, achieving equal or better error rates with Nanopore as with Illumina data, and providing a stable framework for analysing diverse samples without reference bias. This is a significant step towards comprehensive analyses of bacterial genetic variation.

Authors: Rachel M Colquhoun, Michael B Hall, Leandro Lima, Leah W Roberts, Kerri M Malone, Martin Hunt, Brice Letcher, Jane Hawkey, Sophie George, Louise Pankhurst, Zamin Iqbal

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag