Products & Services
Applications

Applications

Nanopore sequencing offers advantages in all areas of research. Our offering includes DNA sequencing, as well as RNA and gene expression analysis and future technology for analysing proteins.

Learn about applications
View all Applications
Resources
News Explore
Contact
Back

Nanopore-based single molecule sequencing of the D4Z4 array responsible for facioscapulohumeral muscular dystrophy

Publication

Date: 1st November 2017 | Source: Scientific Reports

Authors: Satomi Mitsuhashi, So Nakagawa, Mahoko Ueda, Mahoko Ueda, Hiroaki Mitsuhashi.

Subtelomeric macrosatellite repeats are difficult to sequence using conventional sequencing methods owing to the high similarity among repeat units and high GC content. Sequencing these repetitive regions is challenging, even with recent improvements in sequencing technologies. Among these repeats, a haplotype carrying a particular sequence and shortening of the D4Z4 array on human chromosome 4q35 causes one of the most prevalent forms of muscular dystrophy with autosomal-dominant inheritance, facioscapulohumeral muscular dystrophy (FSHD). Here, we applied a nanopore-based ultra-long read sequencer to sequence a BAC clone containing 13 D4Z4 repeats and flanking regions. We successfully obtained the whole D4Z4 repeat sequence, including the pathogenic gene DUX4 in the last D4Z4 repeat. The estimated sequence accuracy of the total repeat region was 99.8% based on a comparison with the reference sequence. Errors were typically observed between purine or between pyrimidine bases. Further, we analyzed the D4Z4 sequence from publicly available ultra-long whole human genome sequencing data obtained by nanopore sequencing. This technology may be a new tool for studying D4Z4 repeats and pathomechanism of FSHD in the future and has the potential to widen our understanding of subtelomeric regions.

Read the full text

Recommended for you

Open a chat to talk to our sales team
FAQs

FAQs

Search