Main menu

Nanopore amplicon sequencing reveals molecular convergence and local adaptation of rhodopsin in Great Lakes Salmonids


Local adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle and MinION.

We sequenced five visual opsin genes for individuals of C. artedi, C. hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in a key spectral tuning amino acid in rhodopsin (Tyr261Phe substitution), suggesting local adaptation of C. kiyi to the blue-shifted depths of Lake Superior. Ancestral state reconstruction demonstrates that parallel evolution and “toggling” at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients.

Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.

Authors: Katherine M Eaton, Moisés A Bernal, Nathan J C Backenstose, Daniel L Yule, Trevor J Krabbenhoft

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag