Products & Services
Applications

Applications

Nanopore sequencing offers advantages in all areas of research. Our offering includes DNA sequencing, as well as RNA and gene expression analysis and future technology for analysing proteins.

Learn about applications
View all Applications
Resources
News Explore
Contact
Back

Nanocall: An Open Source Basecaller for Oxford Nanopore Sequencing Data

Publication

Date: 24th February 2016 | Source: Bioinformatics

Authors: Matei David, Lewis Jonathan Dursi, Delia Yao, Paul C Boutros, Jared T Simpson.

Motivation: The highly portable Oxford Nanopore MinION sequencer has enabled new applications of genome sequencing directly in the field. However, the MinION currently relies on a cloud computing platform, Metrichor (metrichor.com), for translating locally generated sequencing data into basecalls. Results: To allow offline and private analysis of MinION data, we created Nanocall. Nanocall is the first freely-available, open-source basecaller for Oxford Nanopore sequencing data and does not require an internet connection. On two E. coli and two human samples, with natural as well as PCR-amplified DNA, Nanocall reads have ~68% identity, directly comparable to Metrichor “1D” data. Further, Nanocall is efficient, processing ~500Kbp of sequence per core hour, and fully parallelized. Using 8 cores, Nanocall could basecall a MinION sequencing run in real time. Metrichor provides the ability to integrate the “1D” sequencing of template and complement strands of a single DNA molecule, and create a “2D” read. Nanocall does not currently integrate this technology, and addition of this capability will be an important future development. In summary, Nanocall is the first open-source, freely available, off-line basecaller for Oxford Nanopore sequencing data. Availability: Nanocall is available at github.com/mateidavid/nanocall, released under the MIT license. Contact: matei.david at oicr.on.ca

Read the full text

Recommended for you

Tags

Real-time
Open a chat to talk to our sales team