Products & Services
Applications

Applications

Nanopore sequencing offers advantages in all areas of research. Our offering includes DNA sequencing, as well as RNA and gene expression analysis and future technology for analysing proteins.

Learn about applications
View all Applications
Resources
News Explore
Contact
Resource Centre
Back

NAD tagSeq reveals that NAD+-capped RNAs are mostly produced from a large number of protein-coding genes in Arabidopsis

Publication

Date: 29th May 2019 | Source: PNAS

Authors: Hailei Zhang, Huan Zhong, Shoudong Zhang, Xiaojian Shao, Min Ni, Zongwei Cai, Xuemei Chen, Yiji Xia.

The 5′ end of a eukaryotic messenger RNA generally contains an 7-methylguanosine (m7G) cap, which has an essential role in regulating gene expression. Recent discoveries of RNAs with a noncanonical NAD+ moiety indicate the existence of a previously unknown mechanism for controlling gene expression. We have developed a method termed NAD tagSeq for the accurate identification and quantification of NAD+-capped RNAs and for revealing the complete sequences of NAD-RNAs using single-molecule RNA sequencing. Using this method, we found that NAD-RNAs in Arabidopsis were mostly derived from protein-coding genes and that they have essentially the same overall sequence structures as the canonical m7G-RNAs. The identification of NAD-RNAs and their sequence structures facilitates the elucidation of their possible molecular and physiological functions.

Read the full text

Recommended for you

Open a chat to talk to our sales team
FAQs

FAQs

Search