Linking carbohydrate structure with function in the human gut microbiome using hybrid metagenome assemblies

Complex carbohydrates that escape digestion in the small intestine, are broken down in the large intestine by enzymes encoded by the gut microbiome. This is a symbiotic relationship between particular microbes and the host, resulting in metabolic products that influence host gut health and are exploited by other microbes. However, the role of carbohydrate structure in directing microbiota community composition and the succession of carbohydrate-degrading microbes, is not fully understood. In this study we evaluate species-level compositional variation within a single microbiome in response to six structurally distinct carbohydrates in a controlled model gut using hybrid metagenome assemblies.

We identified 509 high-quality metagenome-assembled genomes (MAGs) belonging to ten bacterial classes and 28 bacterial families. We found dynamic variations in the microbiome amongst carbohydrate treatments, and over time. Using these data, the MAGs were characterised as primary (0h to 6h) and secondary degraders (12h to 24h). Recent advances in sequencing technology allowed us to identify significant unexplored diversity amongst starch degrading species in the human gut microbiota including CAZyme profiles for novel MAGs.

Authors: Anuradha Ravi, Perla Troncoso-Rey, Jennifer Ahn-Jarvis, Kendall R. Corbin, Suzanne Harris, Hannah Harris, Alp Aydin, Gemma L. Kay, Thanh Le Viet, Rachel Gilroy, Mark J. Pallen, Andrew J. Page, Justin O’Grady, Frederick J. Warren