Main menu

Herpes Simplex Virus type 1 co-Infection leads to the formation of rolling circle amplification-like adeno-associated virus DNA replication products


Adeno-associated virus (AAV) genome replication only occurs in the presence of a co-infecting helper virus such as adenovirus type 5 (AdV5) or herpes simplex virus type 1 (HSV-1). AdV5-supported replication of the AAV genome has been described to occur in a strand-displacement rolling hairpin mechanism initiated at the AAV 3’ inverted terminal repeat (ITR) end.

It has been assumed that the same mechanism applies to HSV-1-supported AAV genome replication. We demonstrate the formation of double-stranded head-to-tail concatemers of AAV genomes in presence of HSV-1, and thus provide evidence for an unequivocal rolling circle amplification (RCA) mechanism. This study reveals the ability of AAV to modify the canonical rolling hairpin replication mechanism and to mimic the replication strategy of a co-infecting herpesvirus.

This stands in contrast to the textbook model of AAV genome replication when HSV-1 is the helper virus. Furthermore, we introduce nanopore sequencing as a novel, high-throughput approach to study viral genome replication in unprecedented detail.

Authors: Anita F. Meier, Kurt Tobler, Remo Leisi, Anouk Lkharrazi, Carlos Ros, Cornel Fraefel

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag