Extreme genome selection towards complete antimicrobial resistance in a nosocomial strain of Stenotrophomonas maltophilia complex

We report first complete genome sequence and analysis of an extreme drug resistance (XDR) nosocomial Stenotrophomonas maltophilia that is resistant to the mainstream drugs i.e. trimethoprim/sulfamethoxazole (TMP/SXT) and levofloxacin. Taxonogenomic analysis revealed it to be a novel genomospecies of the Stenotrophomonas maltophilia complex (Smc). Comprehensive genomic investigation revealed fourteen dynamic regions (DRs) exclusive to SM866, consisting of diverse antibiotic resistance genes, efflux pumps, heavy metal resistance, various transcriptional regulators etc. Further, resistome analysis of Smc clearly depicted SM866 to be an enriched strain, having diversified resistome consisting of sul1 and sul2 genes. Interestingly, SM866 does not have any plasmid but it harbors two diverse super-integrons of chromosomal origin. Apart from genes for sulfonamide resistance (sul1 and sul2), both of these integrons harbor an array of antibiotic resistance genes linked to ISCR (IS91-like elements common regions) elements. These integrons also harbor genes encoding resistance to commonly used disinfectants like quaternary ammonium compounds and heavy metals like mercury. Hence, isolation of a novel strain belonging to a novel sequence type (ST) and genomospecies with diverse array of resistance from a tertiary care unit of India indicates extent and nature of selection pressure driving XDRs in hospital settings. There is an urgent need to employ complete genome based investigation using emerging technologies for tracking emergence of XDR at the global level and designing strategies of sanitization and antibiotic regime.

Authors: Sanjeet Kumar, Kanika Bansal, Prashant P. Patil, Amandeep Kaur, Satinder Kaur, Vikas Gautam, Prabhu B. Patil