Differential alphavirus defective RNA diversity between intracellular and encapsidated compartments is driven by subgenomic recombination events

Alphaviruses are positive-sense RNA arboviruses that can cause either a chronic arthritis or a potentially lethal encephalitis. Like other RNA viruses, alphaviruses produce truncated, defective genomes featuring large deletions during replication. Defective RNAs (D-RNAs) have primarily been isolated from virions after high-multiplicity of infection passaging. Here, we aimed to characterize both intracellular and packaged viral D-RNA populations during early passage infections under the hypothesis that D-RNAs arise de novo intracellularly that may not be packaged and thus have remained undetected.

To this end, we generated NGS libraries using RNA derived from passage 1 (P1) stock chikungunya virus (CHIKV) 181/clone 25, intracellular virus, and encapsidated P2 virus and analyzed samples for D-RNA expression, followed by diversity and differential expression analyses. We found that the diversity of D-RNA species is significantly higher for intracellular D-RNA populations than encapsidated and specific populations of D-RNAs are differentially expressed between intracellular and encapsidated compartments. Importantly, these trends were likewise observed in a murine model of CHIKV 15561 infection, as well as in vitro studies using related Mayaro, Sindbis, and Aura viruses.

Additionally, we identified a novel subtype of subgenomic D-RNA that are conserved across arthritogenic alphaviruses. D-RNAs specific to intracellular populations were defined by recombination events specifically in the subgenomic region, which was confirmed by direct RNA nanopore sequencing of intracellular CHIKV RNAs. Together, these studies show that only a portion of D-RNAs generated intracellularly are packaged and D-RNAs readily arise de novo in the absence of transmitted template.

Authors: RM Langsjoen, AE Muruato, SR Kunkel, E Jaworski, A Routh