Main menu

The coronavirus proofreading exoribonuclease mediates extensive viral recombination


Coronaviruses (CoVs) emerge as zoonoses and cause severe disease in humans, demonstrated by the SARS-CoV-2 (COVID-19) pandemic. RNA recombination is required during normal CoV replication for subgenomic mRNA (sgmRNA) synthesis and generates defective viral genomes (DVGs) of unknown function. However, the determinants and patterns of CoV recombination are unknown.

Here, we show that divergent β-CoVs SARS-CoV-2, MERS-CoV, and murine hepatitis virus (MHV) perform extensive RNA recombination in culture, generating similar patterns of recombination junctions and diverse populations of DVGs and sgmRNAs.

We demonstrate that the CoV proofreading nonstructural protein (nsp14) 3’-to-5’ exoribonuclease (nsp14-ExoN) is required for normal CoV recombination and that its genetic inactivation causes significantly decreased frequency and altered patterns of recombination in both infected cells and released virions. Thus, nsp14-ExoN is a key determinant of both high fidelity CoV replication and recombination, and thereby represents a highly-conserved and vulnerable target for virus inhibition and attenuation.

Authors: Jennifer Gribble, Andrea J. Pruijssers, Maria L. Agostini, Jordan Anderson-Daniels, James D. Chappell, Xiaotao Lu, Laura J. Stevens, Andrew L. Routh, Mark R. Denison

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Quick links

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

About Oxford Nanopore

Contact us News Media resources & contacts Investor centre Careers BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag