Blake Billmyre: Using long-reads to tell one wtf from another wtf
- Home
- Resource Centre
- Blake Billmyre: Using long-reads to tell one wtf from another wtf
Lightning talk: Blake Billmyre from Stowers Institute for Medical Research showcased his work characterising the WTF gene in the yeast Schizosaccharomyces pombe (fission yeast). He first described how alleles are evolutionary competitors. This is particularly true for the WTF gene, for which specific alleles enhance their own transmission to the next generation by producing a poison that kills offspring that do not contain that allele. WTF genes are part of a large and rapidly evolving family; however, Blake described that the repetitive nature of these genes and proximity to long terminal repeats makes the assembly of WTF loci particularly challenging when using traditional short-read sequencing technology. To overcome these issues, the team at Stowers are now using the long sequencing reads provided by nanopore technology to fully characterise these complex regions. Initial results have shown that copy number and sequence identity can vary greatly between strains, resulting in reproductive barriers between different strains. Concluding his talk, Blake stated that nanopore sequencing is allowing assembly of the WTF region and delineation of WTF genes with accuracy comparable to alternative sequencing approaches.