Analysis procedures for assessing recovery of high quality, complete, closed genomes from Nanopore long read metagenome sequencing

New long read sequencing technologies offer huge potential for effective recovery of complete, closed genomes from complex microbial communities.

Using long read (MinION) obtained from an ensemble of activated sludge enrichment bioreactors, we 1) describe new methods for validating long read assembled genomes using their counterpart short read metagenome assembled genomes; 2) assess the influence of different correction procedures on genome quality and predicted gene quality and 3) contribute 21 new closed or complete genomes of community members, including several species known to play key functional roles in wastewater bioprocesses: specifically microbes known to exhibit the polyphosphate– and glycogen–accumulating organism phenotypes (namely Accumulibacter and Dechloromonas, and Micropruina and Defluviicoccus, respectively), and filamentous bacteria (Thiothrix) associated with the formation and stability of activated sludge flocs.

Our findings further establish the feasibility of long read metagenome–assembled genome recovery, and demonstrate the utility of parallel sampling of moderately complex enrichments communities for recovery of genomes of key functional species relevant for the study of complex wastewater treatment bioprocesses.

Authors: Krithika Arumugam, Irina Bessarab, Mindia A. S. Haryono, Xianghui Liu, Rogelio E. Zuniga-Montanez, Samarpita Roy, Guanglei Qiu, Daniela I. Drautz-Moses, Ying Yu Law,, Stefan Wuertz, Federico M. Lauro, Daniel H. Huson, Rohan B. H. Williams