Main menu

'... our results demonstrate that [Oxford Nanopore Technologies] can be used as a cost-effective sequencing strategy, without the need for complementing with other sequencing technologies, for the reconstruction of complete genomes of the highest quality'

Soto-Serrano et al. bioRxiv (2024)

Assemble complete genomes and plasmids from metagenomic samples — resolving closely related species
Scale your sequencing to your needs — run one to thousands of samples on a single device
Span entire SVs and repetitive regions — characteristic of antimicrobial resistance (AMR) genes — in long nanopore reads

Fully characterise microbial genomes

Microorganisms are the most abundant and diverse forms of life on Earth, with estimates ranging from millions to trillions of species; however, only a small percentage have been identified, let alone sequenced. Of the ~400,000 microbial strains for which sequencing data is available, the majority of genomes are incomplete, reflecting the inherent challenges associated with legacy short-read sequencing technologies. Combining the ability to sequence any length of DNA or RNA fragment — from short to ultra-long (4.2 Mb achieved) — with affordable portable and benchtop devices and real-time results, researchers are using scalable nanopore technology to fully characterise microbial diversity for a wide range of applications.

Bacterial genomes workflow screen

EPI2ME wf-bacterial-genomes

This workflow enables de novo assembly or alignment of bacterial isolate genomes. It also provides annotation of regions of interest within the assemblies, species identification and sequence typing, and identification of genes and single nucleotide variants associated with antimicrobial resistance.

Technology comparison

Oxford Nanopore sequencing

Legacy short-read sequencing

    • Generate complete, high-quality genomes with fewer contigs and simplify de novo assembly
    • Resolve genomic regions inaccessible to short reads, including complex structural variants (SVs) and repeats
    • Analyse long-range haplotypes, accurately phase single nucleotide variants (SNVs) and base modifications, and identify parent-of-origin effects
    • Sequence short DNA fragments, such as amplicons and cell-free DNA (cfDNA)
    • Sequence and quantify full-length transcripts to annotate genomes, fully characterise isoforms, and analyse gene expression — including at single-cell resolution
    • Resolve mobile genetic elements — including plasmids and transposons — to generate critical genomic insights
    • Enhance taxonomic resolution using full-length reads of informative loci, such as the entire 16S gene
    • Assembly contiguity is reduced and complex computational analyses are required to infer results
    • Complex genomic regions such as SVs and repeat elements typically cannot be sequenced in single reads (e.g. transposons, gene duplications, and prophage sequences)
    • Transcript analysis is limited to gene-level expression data
    • Important genetic information is missed
    • Eliminate amplification- and GC-bias, along with read length limitations, and access genomic regions that are difficult to amplify
    • Detect epigenetic modifications, such as methylation, as standard — no additional, time-consuming sample prep required
    • Create cost-effective, amplification-free, targeted panels with adaptive sampling to detect SVs, repeats, SNVs, and methylation in a single assay
    • Amplification is often required and can introduce bias
    • Base modifications are removed, necessitating additional sample prep, sequencing runs, and expense
    • Uniformity of coverage is reduced, resulting in assembly gaps
    • Analyse data as it is generated for immediate access to actionable results
    • Stop sequencing when sufficient data is obtained — wash and reuse flow cell
    • Combine real-time data streaming with intuitive, real-time EPI2ME data analysis workflows for deeper insights
    • Time to result is increased
    • Workflow errors cannot be identified until it is too late
    • Additional complexities of handling large volumes of bulk data
    • Sequence on demand with flexible end-to-end workflows that suit your throughput needs
    • Sequence at sample source, even in the most extreme or remote environments, with the portable MinION device — minimise potential sample degradation caused by storage and shipping
    • Scale up with modular GridION and PromethION devices — suitable for high-output, high-throughput sequencing to generate ultra-rich data
    • Sequence as and when needed using low-cost, independently addressable flow cells — no sample batching needed
    • Use sample barcodes to multiplex samples on a single flow cell
    • Bulky, expensive devices that require substantial site infrastructure — use is restricted to well-resourced, centralised locations, limiting global accessibility
    • High sample batching is required for optimal efficiency, delaying time to results
    • Lengthy sample prep is required
    • Long sequencing run times
    • Workflow efficiency is reduced, and time to result is increased

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
English flag