PCR tiling of African Swine Fever (ASF) virus (SQK-LSK109 with EXP-NBD104 or EXP-NBD114)
- Home
- Documentation
- PCR tiling of African Swine Fever (ASF) virus (SQK-LSK109 with EXP-NBD104 or EXP-NBD114)
MinION: Protocol
PCR tiling of African Swine Fever (ASF) virus (SQK-LSK109 with EXP-NBD104 or EXP-NBD114) V ASFV_9159_v109_revE_18May2022
For Research Use Only
Protocol developed by Amanda Warr et al., 2021
This is a Legacy product This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months.
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 4. DNA extraction
- 5. Tiled DNA amplification and clean-up
- 6. DNA repair and end-prep
- 7. Native barcode ligation
- 8. Adapter ligation and clean-up
- 9. Priming and loading the SpotON flow cell
测序及数据分析 (1)
故障种类及处理方法 (2)
概览
For Research Use Only
Protocol developed by Amanda Warr et al., 2021
This is a Legacy product This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months.
1. Overview of the protocol
重要
This is a Legacy product
This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months. For further information on please see the product update page.
重要
This protocol is a work in progress, and some details are expected to change over time. Please make sure you always use the most recent version of the protocol.
Native Barcoding Expansion 1-12 and 13-24 features
These kits are recommended for users who:
- wish to multiplex samples to reduce price per sample
- want to optimise their sequencing experiment for throughput
- require control over read length
- are interested in utilising upstream processes such as size selection or whole genome amplification
Introduction to the ASFV Native Barcoding protocol
This protocol describes an efficient, low-cost method to sequence ASFV at scale. The method uses tiled PCR amplification of the virus to obtain good coverage, while enabling sample multiplexing to reduce run costs.
The kits used are the Native Barcoding Expansion 1-12 (EXP-NBD104) and 13-24 (EXP-NBD114), in conjunction with the Ligation Sequencing Kit (SQK-LSK109). There are 24 unique barcodes if using both expansion kits, allowing the user to pool up to 24 different samples in one sequencing experiment. It is highly recommended that a Lambda control experiment is completed first to become familiar with the technology.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Extract your DNA, and check its length, quantity and purity The quality checks performed during the protocol are essential in ensuring experimental success
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Prepare your library
You will need to:
- Amplify the viral genome using tiled primers, purify and pool the amplicons
- Repair the DNA, and prepare the DNA ends for barcode attachment
- Ligate Native barcodes supplied in the kit to the DNA ends
- Ligate sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell
Sequencing
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Assemble and analyse the ASF genome using bioinformatics tools of your choice (recommendations included in the "Downstream analysis" sections of the protocol)
重要
我们不建议在测序前混合含条码文库与无条码文库。
重要
Compatibility of this protocol
This protocol should only be used in combination with:
- Ligation Sequencing Kit (SQK-LSK109)
- Native Barcoding Expansions 1-12 (EXP-NBD104) and 13-24 (EXP-NBD114)
- FLO-MIN106 (R9.4.1) flow cells
- Flow Cell Wash Kit (EXP-WSH004)
2. 仪器及耗材 (1)
材料
- Ligation Sequencing Kit (SQK-LSK109)
- Flow Cell Priming Kit (EXP-FLP002)
- Native Barcoding Expansion 1-12 (EXP-NBD104) and 13-24 (EXP-NBD114) if multiplexing more than 12 samples
- ASFV-positive blood samples
耗材
- ASFV primers
- Agencourt AMPure XP beads (Beckman Coulter, A63881)
- Lysis buffer (10 mM ammonium chloride, 150 mM sodium EDTA, 10 mM sodium bicarbonate)
- 5x TEN buffer (0.05 M EDTA, 0.5 M NaCl, 20 mg/ml Proteinase K, 20% SDS, in 0.05 M Tris-HCl, pH 8.0)
- Isopropanol, 100% (Fisher, 10723124)
- 供Oxford Nanopore Technologies®连接测序使用的NEBNext®配套模块(目录号E7180S或 E7180L),或使用以下三种NEBNext®产品:
- NEBNext FFPE修复混合液(NEB,M6630)
- NEBNext Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
- NEBNext 快速连接模块(NEB,E6056)
- 1.5 ml Eppendorf DNA LoBind 离心管
- 0.2 ml 薄壁PCR管
- 无核酸酶水(如ThermoFisher,AM9937)
- Freshly prepared 70% ethanol in nuclease-free water
仪器
- Heat block or water bath set to 95°C
- Hula混匀仪(低速旋转式混匀仪)
- 适用于1.5ml Eppendorf 离心管的磁力架
- 迷你离心机
- 涡旋混匀仪
- 热循环仪
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
- 盛有冰的冰桶
- 计时器
可选仪器
- Agilent生物分析仪(或等效仪器)
- Qubit荧光计 (或用于质控检测的等效仪器)
- Eppendorf 5424 离心机(或等效器材)
供Oxford Nanopore Technologies®连接测序使用的NEBNext®配套模块
对于新用户,我们建议购买供Oxford Nanopore Technologies®连接测序的 NEBNext® 配套模块 (目录号E7180S或E7180L)。该配套模块内包含所有与连接测序试剂盒配套使用的NEB试剂。
请注意:涉及扩增子测序的实验指南中,无需使用NEBNext FFPE修复混合液和NEBNext FFPE修复缓冲液。
Ligation Sequencing Kit (SQK-LSK109) contents
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (µl) |
---|---|---|---|---|
DNA CS | DCS | Yellow | 1 | 50 |
Adapter Mix | AMX | Green | 1 | 40 |
Ligation Buffer | LNB | Clear | 1 | 200 |
L Fragment Buffer | LFB | White cap, orange stripe on label | 2 | 1,800 |
S Fragment Buffer | SFB | Grey | 2 | 1,800 |
Sequencing Buffer | SQB | Red | 2 | 300 |
Elution Buffer | EB | Black | 1 | 200 |
Loading Beads | LB | Pink | 1 | 360 |
Flow Cell Priming Kit (EXP-FLP002) contents
Name | Acronym | Cap colour | No. of vial | Fill volume per vial (μl) |
---|---|---|---|---|
Flush Buffer | FB | Blue | 6 | 1,170 |
Flush Tether | FLT | Purple | 1 | 200 |
Native Barcoding Expansion 1-12 (EXP-NBD104) and 13-24 (EXP-NBD114) contents
EXP-NBD104 kit contents
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Native Barcode 01-12 | NB01-12 | White | 12 | 20 |
Adapter Mix II | AMII | Green | 1 | 40 |
**EXP-NBD114 kit contents** ![EXP-NBD114 kit contents](//images.ctfassets.net/76r1b51it64n/355IyPje5ymq4OOK6maywi/ebb06336aa81351f28d1bc46a1d968f4/EXP-NBD114_kit_contents.svg)
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Native Barcode 13-24 | NB13-24 | White | 12 | 20 |
Adapter Mix II | AMII | Green | 1 | 40 |
Native barcode sequences
The native barcode sequences are the reverse complement of the corresponding barcode sequence in other kits. 24 unique barcodes are available in the Native Barcoding Expansion 1-12 and 13-24 (EXP-NBD104 and EXP-NBD114).
Native Barcoding Expansion 1-12 and 13-24 (EXP-NBD104 and EXP-NBD114)
Component | Forward sequence | Reverse sequence |
---|---|---|
NB01 | CACAAAGACACCGACAACTTTCTT | AAGAAAGTTGTCGGTGTCTTTGTG |
NB02 | ACAGACGACTACAAACGGAATCGA | TCGATTCCGTTTGTAGTCGTCTGT |
NB03 | CCTGGTAACTGGGACACAAGACTC | GAGTCTTGTGTCCCAGTTACCAGG |
NB04 | TAGGGAAACACGATAGAATCCGAA | TTCGGATTCTATCGTGTTTCCCTA |
NB05 | AAGGTTACACAAACCCTGGACAAG | CTTGTCCAGGGTTTGTGTAACCTT |
NB06 | GACTACTTTCTGCCTTTGCGAGAA | TTCTCGCAAAGGCAGAAAGTAGTC |
NB07 | AAGGATTCATTCCCACGGTAACAC | GTGTTACCGTGGGAATGAATCCTT |
NB08 | ACGTAACTTGGTTTGTTCCCTGAA | TTCAGGGAACAAACCAAGTTACGT |
NB09 | AACCAAGACTCGCTGTGCCTAGTT | AACTAGGCACAGCGAGTCTTGGTT |
NB10 | GAGAGGACAAAGGTTTCAACGCTT | AAGCGTTGAAACCTTTGTCCTCTC |
NB11 | TCCATTCCCTCCGATAGATGAAAC | GTTTCATCTATCGGAGGGAATGGA |
NB12 | TCCGATTCTGCTTCTTTCTACCTG | CAGGTAGAAAGAAGCAGAATCGGA |
NB13 | AGAACGACTTCCATACTCGTGTGA | TCACACGAGTATGGAAGTCGTTCT |
NB14 | AACGAGTCTCTTGGGACCCATAGA | TCTATGGGTCCCAAGAGACTCGTT |
NB15 | AGGTCTACCTCGCTAACACCACTG | CAGTGGTGTTAGCGAGGTAGACCT |
NB16 | CGTCAACTGACAGTGGTTCGTACT | AGTACGAACCACTGTCAGTTGACG |
NB17 | ACCCTCCAGGAAAGTACCTCTGAT | ATCAGAGGTACTTTCCTGGAGGGT |
NB18 | CCAAACCCAACAACCTAGATAGGC | GCCTATCTAGGTTGTTGGGTTTGG |
NB19 | GTTCCTCGTGCAGTGTCAAGAGAT | ATCTCTTGACACTGCACGAGGAAC |
NB20 | TTGCGTCCTGTTACGAGAACTCAT | ATGAGTTCTCGTAACAGGACGCAA |
NB21 | GAGCCTCTCATTGTCCGTTCTCTA | TAGAGAACGGACAATGAGAGGCTC |
NB22 | ACCACTGCCATGTATCAAAGTACG | CGTACTTTGATACATGGCAGTGGT |
NB23 | CTTACTACCCAGTGAACCTCCTCG | CGAGGAGGTTCACTGGGTAGTAAG |
NB24 | GCATAGTTCTGCATGATGGGTTAG | CTAACCCATCATGCAGAACTATGC |
ASFV primer sequences
ASFV primer sequences described in the protocol are subject to change. Any updates can be found at ASFV Lilo GitHub page.
Amplicon - primer pair | Forward sequence | Reverse sequence |
---|---|---|
ASFV1 | GGCGTTCATTTCACAAGATGC | ACGGCATCTAAGCAGCTCAATG |
ASFV2 | CAGGCCGATATATCATTTCATCAATATTCA | ACCCAAAGCCCTGGAATCCTTA |
ASFV3 | GCAAACCAAGTGACTCACCCTC | ATTGTATGACGTCGGGGCAGAT |
ASFV4 | ACCTAGTAAAAGTCCTAGAAAAACCTTCA | CGCCATTGTTTTACACAGTCGC |
ASFV5 | TCGAGATTTTATTATTTGGATGCATCATCA | GGACTGATGAAAGCCGTGAA |
ASFV6 | TCCACGCGGTACTTGGCTCC | AGGCCTCGTTGGTGGAAAGGA |
ASFV7 | AGGGCTGATGCAAATCTCTTTTTCA | TCTCCGATTTTCGCATGCCAAA |
ASFV8 | AGTTTGCAAAGAGCCTAAAGATAGACT | AGCGTGGAACTGTAGATGACGA |
ASFV9 | TGCAGAAACCGCAGATGAATGT | ATAGGATTAGATGCGACGCCCA |
ASFV10 | GCATGTAGAGAGGTTTTGGTAGTCA | GGAAACAGCTGGAGAGTTGTGG |
ASFV11 | TGGTTTTGAAATAAAATGCCTTCTACGG | GGAATGCATGGACGAAGAAGCA |
ASFV11 (alt) | CTATGGGATGGGAAGAGTGGTCAA | CGTCAACCGCCGCATTAGC |
ASFV12 | TCCTTGGGAGTTACAGCGAAGA | AATGAAATCATTCGCGGCGAGT |
ASFV13 | CAGACATTGGCAGTGATGGCTA | GAAATGCCGGGCCTTCTACAAA |
ASFV14 | GCTACTCCCCCAAATATCACATATAATTGT | TTTTTCGTGTTGCTGTTCGGGA |
ASFV15 | GGATGGCACCCTTCTCACAATC | TGCGTATGACCCGATGTTGTTG |
ASFV16 | GTCGACTTCACAGGAACAACGG | ACCCGCTTTACACAAAACACGT |
ASFV17 | TGGAATTTCCTGACGTGGCAAA | GCAACCGCTATTCCAAACAGGA |
ASFV18 | AGTTGTTGTCCTAGACCGTGGCA | TGAAAAGGAGGGCACGATCC |
ASFV19 | CCCGTATGCGGGCGTACTTT | TGGCCTCTTCTTTCCCCCGA |
ASFV20 | GGCCGCAACATTTGTGTCAAAG | GCTCGCGAACAAATTACTCCCA |
ASFV21 | GAATGGCAGCGATGATCTCAGG | TGCAGGGCAAGGGTATACTGAA |
ASFV22 | TGGCGTCGTTTAACAGCTTGAT | GCTGGATGGCAAATCGGTTGTA |
ASFV23 | AGGCGTGAAAATTCTTCTTCAAACA | AGACGTTTTAAGCTGCATGGCA |
ASFV24 | GGCAGCAGGATCTTAAAACCGG | TGCATAATGCCCAGCTTTTCGT |
ASFV25 | GCTGTTTAAGCGTTTCAAGCTGA | CTCCGCGGGGAACATTGTTTTA |
ASFV26 | CCCTGGGAGGAGTCATCATGAA | GGTCATTGACTTTGGAAGCGCT |
ASFV27 | ACTGTCTGCTAGACTCCCAGGA | CCCAAGAGGAGGAATGGTTTGC |
ASFV28 | GCCCCCTAGCGTCACCGAAT | CCAAGCCTGCTGCGAAGCTC |
ASFV29 | GACGCAATTTCGGCTGTTTTTAAAA | GACTTGGTCTCCGGCTCAAAAG |
ASFV30 | GTTGGGGTGTTGGAGCGAATAA | TTCTGCTTACGGACGATGCAAC |
ASFV31 | TAGTTGTGAAGCGTTCTCGGGT | GAGCACATGTTACTCGCCACTC |
ASFV32 | GGACTTCTTATGCTCAGATGGGC | ACTGCTGCAGGCGTTAAACATT |
3. 计算机要求及软件 (1)
MinION Mk1B的IT配置要求
请为MinION Mk1B配备一台高规格的计算机或笔记本电脑,以适配数据采集的速度。您可以在MinION Mk1B的IT配置要求文件中了解更多。
MinION Mk1C的IT配置要求
MinION Mk1C是一款集计算功能和触控屏幕于一体的便携式测序分析仪,它无需依赖任何额外设备,即可生成并分析纳米孔测序数据。您可以在 MinION Mk1C的IT配置要求文件中了解更多。
MinION Mk1D IT requirements
Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.
Software for nanopore sequencing
MinKNOW
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
EPI2ME (optional)
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.
测序芯片质检
我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片12周之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :
测序芯片 | 芯片上的活性孔数确保不少于 |
---|---|
Flongle 测序芯片 | 50 |
MinION/GridION 测序芯片 | 800 |
PromethION 测序芯片 | 5000 |
** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。
4. DNA extraction
材料
- ASFV-positive blood samples
耗材
- Lysis buffer (10 mM ammonium chloride, 150 mM sodium EDTA, 10 mM sodium bicarbonate)
- 5x TEN buffer (0.05 M EDTA, 0.5 M NaCl, 20 mg/ml Proteinase K, 20% SDS, in 0.05 M Tris-HCl, pH 8.0)
- Freshly prepared 70% ethanol in nuclease-free water
- Isopropanol, 100% (Fisher, 10723124)
- Nuclease-free water
- 1.5 ml Eppendorf DNA LoBind 离心管
仪器
- 迷你离心机
- Heat block or water bath set to 95°C
- Hula混匀仪(低速旋转式混匀仪)
- P1000移液枪和枪头
- P200 移液枪和枪头
- P100移液枪和枪头
- P20 pipette and tips
重要
Below is one example of a method to extract DNA from swine blood samples. However, users can instead use other options (e.g. commercially-available DNA extraction kits) if preferred. The authors have found that spin columns are not suitable for this protocol due to PCR inhibitors being carried over in the blood. This method is optimised for frozen blood samples; other methods may work with fresh blood.
The blood samples used will have been tested for ASFV by PCR prior to DNA extraction. Individual blood samples are preferred; however this protocol can also work with pooled blood samples from multiple animals.
Transfer 50 μl of whole blood to a 1.5 ml Eppendorf DNA LoBind tube.
Add 1 ml of lysis buffer to each sample.
Incubate on a Hula mixer (rotator mixer) for 1 minute at room temperature.
Remove the samples from the Hula mixer and incubate at room temperature for 30 minutes.
Centrifuge at 7,500 rpm for 5 minutes. You should see a pellet form at the bottom of the tube.
Without disturbing the pellet, remove and discard the supernatant.
Add 700 μl of 5X TEN buffer to each sample.
Incubate on a Hula mixer (rotator mixer) for 1 minute at room temperature.
Remove the samples from the Hula mixer and incubate at room temperature for 30 minutes.
Incubate the samples at 95°C for 5 minutes in a heat block or water bath.
Centrifuge at 7,500 rpm for 5 minutes. You should see a pellet form at the bottom of the tube.
Without disturbing the pellet, remove and discard the supernatant.
Resuspend each pellet in 700 μl 100% isopropanol.
Incubate on a Hula mixer (rotator mixer) for 1 minute at room temperature.
Remove the samples from the Hula mixer and incubate at room temperature for 30 minutes.
Prepare sufficient fresh 70% ethanol in nuclease-free water.
Centrifuge the samples at 14,500 rpm for 15 minutes. You should see a white pellet form at the bottom of the tube.
Without disturbing the pellet, remove and discard the supernatant.
Wash the pellet by adding 500 μl of freshly-prepared 70% ethanol and pipetting up and down.
Centrifuge the samples at 11,500 rpm for 5 minutes.
Without disturbing the pellet, remove and discard the supernatant.
Allow the pellet to dry for ~30 seconds, ensuring there is no ethanol left in the sample. However, do not dry the pellet to the point of cracking.
Resuspend the pellet in 30 μl nuclease-free water. If it is difficult to resuspend in this volume, add more nuclease-free water.
步骤结束
The resuspended samples will be taken forward into the tiled DNA amplification and clean-up step. The extracted DNA can be used immediately or stored at 4°C for up to one week. For longer-term storage place at -20°C or -80°C.
5. Tiled DNA amplification and clean-up
材料
- Extracted ASFV DNA
耗材
- ASFV primers
- VeriFi HS Mix (PCRBIO)
- Nuclease-free water
- Agencourt AMPure XP Beads (Beckman Coulter™, A63881)
- Freshly prepared 70% ethanol in nuclease-free water
- 0.2 ml thin-walled PCR tubes
- 1.5 ml Eppendorf DNA LoBind 离心管
- Qubit™ 分析管(Invitrogen, Q32856)
- Qubit dsDNA BR Assay Kit (Invitrogen, Q32850)
仪器
- Microfuge
- Thermal cycler and/or heating block
- Hula mixer (gentle rotator mixer)
- Magnetic rack suitable for 0.2 ml PCR tubes
- P1000移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 pipette and tips
- P2移液枪和枪头
- Qubit荧光计(或用于质控检测的等效仪器)
Prepare the primers according to the manufacturer's instructions.
Pool the tiled primer pairs in Eppendorf or PCR tubes following these proportions. The final stock concentration should be 100 μM.
Odd primer pool:
Primer pair | Concentration |
---|---|
3 | 0.75X |
5 | 2X |
7 | 1X |
9 | 1X |
11 | 1X |
11 alt | 1X |
13 | 1X |
15 | 1X |
17 | 1.5X |
19 | 1X |
21 | 1X |
23 | 1X |
25 | 2X |
27 | 1X |
29 | 1X |
31 | 0.5X |
Even primer pool:
Primer pair | Concentration |
---|---|
2 | 1X |
4 | 2X |
6 | 0.5X |
8 | 1.5X |
10 | 2X |
12 | 2X |
14 | 2.5X |
16 | 1X |
18 | 1.5X |
20 | 1X |
22 | 1.5X |
24 | 1.5X |
26 | 1.5X |
28 | 0.75X |
30 | 1.5X |
32 | 1X |
Primer one:
Primer number | Concentration |
---|---|
1 | 1X |
Note: Due to the proximity to the telomeric sequence, primer 1 has a shorter amplicon length. The primer does not perform optimally in when pooled with others, therefore it is prepared separately.
可选操作
To conserve the DNA samples, dilute 1:10 using nuclease-free water. Unused sample should be stored at –20°C.
Immediately before setting up the PCR, dilute each primer pool 1:10 in nuclease-free water to make a 10 μM working stock.
For each sample, prepare one reaction corresponding to each primer pool in 0.2 ml PCR tubes:
Note: For each sample you will have three reactions – odd primer pool, even primer pool, and primer 1 pool.
Between each addition, pipette mix 10-20 times.
Reagent | Volume |
---|---|
Nuclease-free water | 9 µl |
ASFV DNA (1:10 dilution) | 2 µl |
Primer pool (1:10 dilution) | 1.5 µl |
VeriFi HS Mix (PCRBIO) | 12.5 µl |
Total | 25 µl |
Note: we recommend to make a PCR master mix, either for individual primer pools for multiple samples or one for the three primers sets.
Mix well by pipetting and spin down.
Incubate in a thermocycler using the following program:
Step | Temperature | Time | Cycles |
---|---|---|---|
Initial denaturation | 98°C | 1 min | 1 |
Denaturation Annealing Extension | 98°C 60°C 72°C | 15 sec 15 sec 4 min 40 sec | 40 |
Final extension | 72°C | 5 min | 1 |
Hold | 10°C | ∞ |
Resuspend the AMPure XP beads by vortexing.
Add 10 µl of resuspended AMPure XP beads to each tube and mix by gently pipetting.
Incubate for 10 minutes at room temperature.
Prepare 50 ml of fresh 70% ethanol in nuclease-free water.
Spin down the tubes and pellet the beads on a magnet for 5 minutes. Keep the tubes on the magnet until the eluate is clear and colourless, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads in each well with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
Repeat the previous step.
Spin down and place the tubes back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
Remove the tubes from the magnetic rack and resuspend each pellet in 15 µl nuclease-free water. Incubate for 2 minutes at room temperature.
Pellet the beads on a magnet until the eluate is clear and colourless.
Remove and retain 15 µl of eluate containing the DNA for each sample, in its three respective primer pools, into a clean tube.
Note: At this point you should still have three tubes for each DNA sample.
Quantify 1 μl of each cleaned PCR product using a Qubit ds DNA BR assay.
Using the Qubit reads, pool each sample by quantity in the following proportions:
Primer pool | Proportion |
---|---|
Pool 1 | 48% |
Pool 2 | 50% |
Amplicon 1 | 2% |
提示
If your pools consistently have a similar Qubit quantification across samples, in future experiments it is possible to omit the Qubit step and pool the samples by volume based on previous results.
步骤结束
Take forward the DNA sample pools into the DNA repair and end-prep step. However, at this point it is also possible to store the samples at 4°C overnight.
6. DNA repair and end-prep
材料
- Pooled ASFV amplicons
耗材
- 0.2 ml薄壁PCR管
- 无核酸酶水(如ThermoFisher,AM9937)
- NEBNext FFPE DNA 修复混合液(NEB,M6630)
- NEBNext® Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
- Agencourt AMPure XP Beads (Beckman Coulter™, A63881)
- Freshly prepared 70% ethanol in nuclease-free water
- 1.5 ml Eppendorf DNA LoBind 离心管
仪器
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P10 移液枪和枪头
- 热循环仪
- 迷你离心机
- Hula混匀仪(低速旋转式混匀仪)
- 磁力架
- 盛有冰的冰桶
根据生产厂家的说明准备NEBNext FFPE DNA 修复混合液和 NEBNext Ultra II 末端修复/ dA尾添加模块,并置于冰上。
为获得最优表现,NEB建议如下:
于冰上解冻所有试剂。
轻弹并/或翻转各管,确保各试剂充分混匀。
注意: 请切勿涡旋振荡 FFPE DNA修复混合液或 Ultra II末端修复酶混合物。同一日内首次打开一管试剂前,请务必先将该管试剂瞬时离心。
Ultra II 末端修复缓冲液和 FFPE DNA 修复缓冲液内可能出现少量沉淀。待此两管液体回复至室温后,使用移液枪上下吹打数次,打散沉淀;然后涡旋振荡30秒,以确保沉淀充分溶解。
注意: 请务必涡旋振荡混匀缓冲液。FFPE DNA 修复缓冲液可能轻微泛黄,不影响使用。
Prepare the DNA in nuclease-free water.
- Transfer 700 ng of amplicon DNA into a 1.5 ml Eppendorf DNA LoBind tube
- Adjust the volume to 48 μl with nuclease-free water
- Mix thoroughly by flicking the tube
- Spin down briefly in a microfuge
提示
If there is not enough PCR product for the 700 ng pool, the end-prep reaction below can be carried out at half the volume.
In a 0.2 ml thin-walled PCR tube, mix the following:
Between each addition, pipette mix 10-20 times
Reagent | Volume |
---|---|
DNA | 48 µl |
NEBNext FFPE DNA Repair Buffer | 3.5 µl |
Ultra II End-prep reaction buffer | 3.5 µl |
Ultra II End-prep enzyme mix | 3 µl |
NEBNext FFPE DNA Repair Mix | 2 µl |
Total | 60 µl |
Mix well by pipetting and spin down.
使用热循环仪,在20℃下孵育5分钟,然后在65℃下孵育5分钟。
将DNA样本转至干净的1.5 ml Eppendorf DNA LoBind离心管中。
Resuspend the AMPure XP beads by vortexing.
Add 60 µl of resuspended AMPure XP beads to the end-prep reaction and mix by flicking the tube.
将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育5分钟。
Prepare 500 μl of fresh 70% ethanol in nuclease-free water.
将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去清液。
Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend the pellet in 25 µl nuclease-free water. Spin down and incubate for 5 minutes at room temperature.
将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。
Remove and retain 25 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
可选操作
Quantify 1 µl of eluted sample using a Qubit fluorometer.
步骤结束
Take forward the repaired and end-prepped DNA into the native barcode ligation step. However, at this point it is also possible to store the sample at 4°C overnight.
7. Native barcode ligation
材料
- Native Barcoding Expansion 1-12 (EXP-NBD104) and 13-24 (EXP-NBD114) if multiplexing more than 12 samples
耗材
- 新制备的70%乙醇(用无核酸酶水配制)
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
- Agencourt AMPure XP beads (Beckman Coulter, A63881)
- NEB Blunt/TA 连接酶预混液(NEB,M0367)
仪器
- 适用于1.5ml Eppendorf 离心管的磁力架
- Hula混匀仪(低速旋转式混匀仪)
- 涡旋混匀仪
- 盛有冰的冰桶
- 迷你离心机
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P10 移液枪和枪头
可选仪器
- Qubit荧光计 (或用于质控检测的等效仪器)
Select a unique barcode for every sample to be run together on the same flow cell, from the provided 24 barcodes. Up to 24 samples can be barcoded and combined in one experiment.
Thaw the native barcodes at room temperature. Use one barcode per sample. Individually mix the barcodes by pipetting, spin down, and place them on ice.
Dilute 500 ng of each end-prepped sample to be barcoded to 22.5 µl in nuclease-free water.
Add the reagents in the order given below, mixing by flicking the tube between each sequential addition:
Reagent | Volume |
---|---|
500 ng end-prepped DNA | 22.5 µl |
Native Barcode | 2.5 µl |
Blunt/TA Ligase Master Mix | 25 µl |
Total | 50 µl |
Mix by pipetting up and down 10-20 times and spin down.
室温下孵育10 分钟。
Resuspend the AMPure XP beads by vortexing.
Add 50 µl of resuspended AMPure XP beads to the reaction and mix by pipetting.
将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育5分钟。
Prepare 500 μl of fresh 70% ethanol in nuclease-free water.
将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去上清液。
Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend the pellet in 26 µl nuclease-free water. Incubate for 2 minutes at room temperature.
将离心管静置于磁力架上,直到磁珠和液相分离,且洗脱液澄清无色。
Remove and retain 26 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.
Dispose of the pelleted beads
CHECKPOINT
取1µl洗脱样品,用Qubit荧光计定量。
重要
Please first refer to the ligation step below to ensure that the library is diluted to the correct volume.
Pool equimolar amounts of each barcoded sample into a 1.5 ml Eppendorf DNA LoBind tube, ensuring that sufficient sample is combined to produce a pooled sample of 700 ng total.
Quantify 1 µl of pooled and barcoded DNA using a Qubit fluorometer.
Dilute 700 ng pooled sample to 65 µl in nuclease-free water.
可选操作
If 700 ng of pooled sample exceeds 65 µl in volume, perform an AMPure clean-up with 2.5x Agencourt AMPure XP beads to pooled sample volume, eluting in 65 µl of nuclease-free water.
步骤结束
Take forward the pooled samples into the next step. However, at this point it is also possible to store the sample at 4°C overnight.
8. Adapter ligation and clean-up
材料
- 长片段缓冲液(LFB)
- Oxford Nanopore测序试剂盒中的洗脱缓冲液(EB)
- Adapter Mix II (AMII)
耗材
- NEBNext®快速连接模块(NEB,E6056)
- NEBNext®快速连接反应缓冲液(NEB,B6058)
- Agencourt AMPure XP beads (Beckman Coulter™, A63881)
- 1.5 ml Eppendorf DNA LoBind 离心管
仪器
- 迷你离心机
- 磁力架
- 涡旋混匀仪
- Hula混匀仪(低速旋转式混匀仪)
可选仪器
- Qubit荧光计(或用于质控检测的等效仪器)
Adapter Mix II Expansion use
Protocols that use the Native Barcoding Expansions require 5 μl of AMII per reaction. Native Barcoding Expansions EXP-NBD104/NBD114 contain sufficient AMII for 6 reactions (or 12 reactions when sequencing on Flongle). This assumes that all barcodes are used in one sequencing run.
The Adapter Mix II expansion provides additional AMII for customers who are running subsets of barcodes, and allows a further 12 reactions (24 on Flongle).
Thaw the Elution Buffer (EB) and NEBNext Quick Ligation Reaction Buffer (5x) at room temperature, mix by vortexing, spin down and place on ice. Check the contents of each tube are clear of any precipitate.
Spin down the T4 Ligase and the Adapter Mix II (AMII), and place on ice.
Thaw one tube of Long Fragment Buffer (LFB) at room temperature and mix by vortexing, then spin down and place on ice.
Taking the pooled and barcoded DNA, perform adapter ligation as follows, mixing by flicking the tube between each sequential addition.
Reagent | Volume |
---|---|
700 ng pooled barcoded sample | 65 µl |
Adapter Mix II (AMII) | 5 µl |
NEBNext Quick Ligation Reaction Buffer (5X) | 20 µl |
Quick T4 DNA Ligase | 10 µl |
Total | 100 µl |
Ensure the components are thoroughly mixed by pipetting, and spin down.
Incubate the reaction for 10 minutes at room temperature.
Resuspend the AMPure XP beads by vortexing.
Add 40 µl of resuspended AMPure XP beads to the reaction and mix by pipetting.
将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育5分钟。
Place on a magnetic rack, allow beads to pellet and pipette off supernatant.
Wash the beads by adding 250 μl Long Fragment Buffer (LFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
重复上述步骤。
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的上清液。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB). Spin down and incubate for 10 minutes at 37°C to improve the recovery of long fragments.
将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。
将此15µl洗脱液转移至一支新的1.5ml Eppendorf DNA LoBind管中。
丢弃磁珠
Quantify 1 µl of adapter ligated and barcoded DNA using a Qubit fluorometer - recovery aim ~430 ng.
步骤结束
构建好的文库即可用于测序芯片上样。在上样前,请将文库置于冰上。
提示
Library storage recommendations
We recommend storing libraries in Eppendorf DNA LoBind tubes at 4°C for short term storage or repeated use, for example, reloading flow cells between washes. For single use and long-term storage of more than 3 months, we recommend storing libraries at -80°C in Eppendorf DNA LoBind tubes. For further information, please refer to the DNA library stability Know-How document.
可选操作
If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.
Additional buffer for doing this can be found in the Sequencing Auxiliary Vials expansion (EXP-AUX001), available to purchase separately. This expansion also contains additional vials of Sequencing Buffer (SQB) and Loading Beads (LB), required for loading the libraries onto flow cells.
9. Priming and loading the SpotON flow cell
材料
- Flow Cell Priming Kit (EXP-FLP002)
- Loading Beads (LB)
- Sequencing Buffer (SQB)
耗材
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
仪器
- MinION device
- SpotON Flow Cell
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- MinION 及GridION 测序芯片遮光片
Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing, and spin down at room temperature.
To prepare the flow cell priming mix, add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.
Open the MinION device lid and slide the flow cell under the clip.
Press down firmly on the flow cell to ensure correct thermal and electrical contact.
顺时针转动预处理孔孔盖,使预处理孔显露出来。
重要
从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。
将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:
- 将P1000移液枪转至200µl刻度。
- 将枪头垂直插入预处理孔中。
- 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
__请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。
通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。
Thoroughly mix the contents of the Loading Beads (LB) by pipetting.
重要
The Loading Beads (LB) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.
提示
Using the Loading Beads
Demo of how to use the Loading Beads.
In a new tube, prepare the library for loading as follows:
Reagent | Volume per flow cell |
---|---|
Sequencing Buffer (SQB) | 37.5 µl |
Loading Beads (LB), mixed immediately before use | 25.5 µl |
DNA library | 12 µl |
Total | 75 µl |
Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer (SQB) and Loading Beads (LB) because the fuel in the buffer will start to be consumed by the adapter.
完成测序芯片的预处理:
- 轻轻地翻起SpotON上样孔盖,使SpotON上样孔显露出来。
- 通过预处理孔(而 非 SpotON加样孔)向芯片中加入200µl预处理液,避免引入气泡。
临上样前,用移液枪轻轻吹打混匀制备好的文库。
通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。
轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。
重要
为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。
我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。
按下述步骤安装测序芯片遮光片:
小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。
将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。
注意
MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。
步骤结束
小心合上测序设备上盖并在MinKNOW上设置测序实验。
10. Data acquisition and basecalling
纳米孔数据分析概览
有关纳米孔数据分析的完整概述,包括碱基识别和次级分析,请参阅 数据分析 文档。
如何开始测序
MinKNOW软件负责仪器控制,数据采集和实时碱基识别。如您已在计算机上安装MinKNOW,则可选择以下几种途径开展测序:
1. 使用计算机上的MinKNOW进行实时数据采集和碱基识别
请按照 MinKNOW 实验指南 的说明操作:从“开始测序”部分起,到“MinKNOW运行结束”部分止。
2. 使用MinION Mk1B/Mk1D测序仪进行实时数据采集和碱基识别
请按照 MinION Mk1B 用户手册 或 MinION Mk1D 用户手册中的说明操作。
3. 使用MinION Mk1C测序仪进行实时数据采集和碱基识别
请参照 MinION Mk1C 用户手册中的说明操作。
4. 使用GridION进行实时数据采集和碱基识别
请参照 GridION 用户手册 中的说明操作。
5. 使用PromethION测序仪进行实时数据采集和碱基识别
请参照 PromethION 用户手册 或 PromethION 2 Solo 用户手册中的说明操作。
6. 使用计算机上的MinKNOW进行数据采集,过后再用NinKNOW进行线下碱基识别
请按照 MinKNOW 实验指南 中的说明操作:从“开始测序”部分起,到“MinKNOW运行结束”部分止。 当您设置实验参数时,请将 碱基识别 选项设为“关”。 测序实验结束后,请按照 MinKNOW 实验指南的本地分析 部分操作。
11. Downstream analysis
Additional resources for analysing your ASFV data
Note: Information subject to change, please refer to No part gets left behind: Tiled nanopore sequencing of whole ASFV genomes stitched together using Lilo by Amanda Warr et al., 2021 for most recent updates.
Bioinformatic processing of ASFV genomes sequenced with shotgun sequencing
The shotgun sequencing data were basecalled and demultiplexed using MinKNOW (v19.06.8) using Fast basecalling. Following basecalling the reads were aligned to an ASFV genome using minimap2 to identify ASFV reads, the .fast5 files for these reads were extracted using fast5_subset from the ont_fast5_api and these again using high accuracy basecalling (this reduces basecalling time, suitable for when working with lower spec laptops/computers that have low GPU capacity). The reads were assembled with Flye (v2.6) - additional Flye resources available following the link: Assembly of long, error-prone reads using repeat graphs and polished three times with Medaka (v0.7.1). Comparisons of quantity of data produced and the proportion of which were ASFV reads were done using NanoComp (v1.28.1) - additional Nanopack resources available following the link: NanoPack: visualizing and processing long-read sequencing data.
Bioinformatic processing of ASFV genomes from tiled amplicons with Lilo
The data were basecalled and demultiplexed using Guppy (v5.0.14) using high or super accuracy model on a GPU.
The snakemake pipeline Lilo was used, taking the following steps:
- Use Porechop (v0.2.3) to remove any sequencing adapters or barcodes that have made it through demultiplexing.
- Align to a reference with minimap2 (v2.22) and samtools (v1.12) and separate reads into amplicons by alignment position with bedtools (v2.30.0).
- Select reads of the expected amplicon length (+/-5%) and subset to 300X
- Select the read with highest average base quality within +/-1% of the median length of reads for the amplicon to be the “reference” using bioawk v1 and remove any amplicons with fewer than 40 reads (targeting the median length allows for flexibility for large insertions or deletions).
- Pool amplicon reads and references back into their original non-overlapping pools.
- Polish the pools three times with Medaka (v1.4.4) and combine resulting polished amplicons.
- Align to the reference with minimap2 and remove soft clipped bases (these likely represent missed barcodes or adapters).
- Run porechop to remove primers from the amplicons.
- Merge the amplicons with scaffold_builder (v2.3).
The required input to Lilo are demultiplexed reads in FASTQ format in a directory named “raw/”, a reference FASTA, a .bed file of primer alignments (as output by primal scheme), and a .csv of primer sequences (if there are ambiguous bases it is advised to expand them first) and a config file, described on the GitHub page. It is adaptable to any species (with a single genome fragment/chromosome) with any tiled primer scheme. The pipeline outputs a FASTA file containing the assembled genome.
ARTIC assemblies
A subset of genomes were also assembled using the ARTIC pipeline (v1.2.1) following the bioinformatics SOP using the Medaka method.
Quality control of assembled genomes
Quast (v5.0.2) was used to compare the assembled genomes to the most closely related publicly available ASFV assembly according to BLAST alignment (MN715134.1) - links and additional resources available following the link: Short and Long-Read Sequencing Survey of the Dynamic Transcriptomes of African Swine Fever Virus and the Host Cells. Samples where both WGS and tiled sequencing were used were compared for overall structure using nucmer (v4.0.0beta2) - links and aditional reources available following the link: MUMmer4: A fast and versatile genome alignment system.
Phylogeny
12. 测序芯片的重复利用及回收
材料
- 测序芯片清洗剂盒(EXP-WSH004)
完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于+2至+8℃保存。
您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南。
提示
我们建议您在停止测序实验后尽快清洗测序芯片。如若无法实现,请将芯片留在测序设备上,于下一日清洗。
或者,请按照回收程序将测序芯片返还至Oxford Nanopore。
您可在此处找到回收测序芯片的说明。
重要
如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。
13. Issues during DNA extraction and library preparation
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
低质量样本
现象 | 可能原因 | 措施及备注 |
---|---|---|
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) | 用户所使用的DNA提取方法未能达到所需纯度 | 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法。 请考虑将样品再次用磁珠纯化。 |
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。 |
RNA的片段长度短于预期 | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。 我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染. |
Low output from PCR
Observation | Possible cause | Comments and actions |
---|---|---|
Low output from PCR | Insufficient primer | Increase the amount of primer pool in the PCR reaction by 0.25-1 µl, decrease water proportionally. |
- | Insufficient DNA template | Use undiluted DNA. |
- | Thermocycler fault | Ensure that you use a thermocycler that has been recently calibrated. |
- | Insufficient viral DNA and an abundance of host DNA | Use a host depletion method such as NEBNext® Microbiome DNA Enrichment Kit before PCR*. |
- | Low representation of a particular primer in the sequencing data | Spike in a small quantity of the primer in the 100 µM pool before future runs |
* This may be prohibitively expensive at scale, but for precious samples this will have a noticeable impact on amplicon yield.
经AMPure磁珠纯化后的DNA回收率低
现象 | 可能原因 | 措施及备注 |
---|---|---|
低回收率 | AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 | 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。 2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。 |
低回收率 | DNA片段短于预期 | AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 |
末端修复后的DNA回收率低 | 清洗步骤所用乙醇的浓度低于70% | 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。 |
14. Issues during the sequencing run
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 纳米孔阵列中引入了气泡 | 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。 |
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 测序芯片没有正确插入测序仪 | 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。 |
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 文库中残留的污染物对纳米孔造成损害或堵塞 | 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。 如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法 。 |
MinKNOW脚本失败
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示 "Script failed”(脚本失败) | 重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。 |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
读长短于预期
现象 | 可能原因 | 措施及备注 |
---|---|---|
读长短于预期 | DNA样本降解 | 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。 1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。 2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。 在上图中,样本1为高分子量DNA,而样本2为降解样本。 3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。 |
大量纳米孔处于不可用状态
现象 | 可能原因 | Comments and actions |
---|---|---|
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示) 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。 | 样本中含有污染物 | 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加: 1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或 2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。 |
大量纳米孔处于失活状态
现象 | 可能原因 | 措施及备注 |
---|---|---|
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) | 测序芯片中引入了气泡 | 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。 |
大量纳米孔处于失活/不可用状态 | 文库中存在与DNA共纯化的化合物 | 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。 1. 请参考 植物叶片DNA提取方法。 2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。 3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。 |
大量纳米孔处于失活/不可用状态 | 样本中含有污染物 | 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。 |
运行过程中过孔速度和数据质量(Q值)降低
现象 | 可能原因 | 措施及备注 |
---|---|---|
运行过程中过孔速度和数据质量(Q值)降低 | 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 | 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。 |
温度波动
现象 | 可能原因 | 措施及备注 |
---|---|---|
温度波动 | 测序芯片和仪器接触不良 | 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。 |
未能达到目标温度
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示“未能达到目标温度” | 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) | MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION温度控制的更多信息,请参考此 FAQ (常见问题)文档。 |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |