PCR tiling of SARS-CoV-2 virus - classic protocol (SQK-LSK109 with EXP-NBD104, EXP-NBD114 or EXP-NBD196)
- Home
- Documentation
- PCR tiling of SARS-CoV-2 virus - classic protocol (SQK-LSK109 with EXP-NBD104, EXP-NBD114 or EXP-NBD196)
MinION: Protocol
PCR tiling of SARS-CoV-2 virus - classic protocol (SQK-LSK109 with EXP-NBD104, EXP-NBD114 or EXP-NBD196) V PTC_9096_v109_revY_06Feb2020
For Research Use Only This protocol includes a PCR SPRI clean-up, quantification and normalisation steps to ensure equal distribution of barcodes for 24, 48 and 96 samples.
This is a Legacy product This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months.
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 4. Reverse transcription
- 5. PCR and clean-up
- 6. End-prep
- 7. Native barcode ligation
- 8. Adapter ligation and clean-up
- 9. Priming and loading the SpotON flow cell
Sequencing and data analysis
故障种类及处理方法
概览
For Research Use Only This protocol includes a PCR SPRI clean-up, quantification and normalisation steps to ensure equal distribution of barcodes for 24, 48 and 96 samples.
This is a Legacy product This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months.
1. Overview of the protocol
重要
This is a Legacy product
This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months. For further information on please see the product update page.
重要
This protocol is a work in progress, and some details are expected to change over time. Please make sure you always use the most recent version of the protocol.
This protocol is the 'classic' version of the PCR tiling of SARS-CoV-2 virus protocol, which includes a PCR SPRI clean-up, quantification and normalisation steps to ensure equal distribution of barcodes. This protocol has been updated to outline library preparation for X24, X48 and X96 samples using the Native Barcoding Expansions 1-12 (EXP-NBD104), 13-24 (EXP-NBD114), or Native Barcoding Expansion 96 (EXP-NBD196).
This protocol is based on the ARTIC amplicon sequencing protocol for MinION for SARS-CoV-2 v3 (LoCost) by Josh Quick. In the table below, we have highlighted which steps are different between the protocols.
Step change | Oxford Nanopore Technologies protocol PCR tiling of SARS-CoV-2 virus | Oxford Nanopore Technologies protocol Eco PCR tiling of SARS-CoV-2 virus | ARTIC amplicon sequencing protocol for SARS-CoV-2 v3 (LoCost) by Josh Quick |
---|---|---|---|
Reverse transcription | LunaScript RT SuperMix (5X): 4 µl RNA sample: 16 µl Total: 20 µl | LunaScript RT SuperMix (5X): 2 µl RNA sample: 8 µl Total: 10 µl | LunaScript RT SuperMix (5X): 2 µl RNA sample: 8 µl Total: 10 µl |
PCR | Q5 Hot Start High-Fidelity 2X Master Mix: 12.5 µl Primer pool A/B (10 µM): 3.7 µl Nuclease-free water: 3.8 µl Total: 20 µl cDNA: 5 µl 1.0X SPRI clean-up after PCR | Q5 Hot Start High-Fidelity 2X Master Mix: 12.5 µl Primer pool A/B (100 µM): 0.37 µl Nuclease-free water: 9.63 µl Total: 22.5 µl cDNA: 2.5 µl The clean-up, quantification and normalisation steps have been removed. | Q5 Hot Start High-Fidelity 2X Master Mix: 12.5 µl Primer pool A/B (10 µM): 4 µl Nuclease-free water: 6 µl Total: 22.5 µl cDNA: 2.5 µl |
End-prep | DNA in nuclease-free water: 12.5 µl Ultra II End Prep Reaction Buffer: 1.75 µl Ultra II End Prep Enzyme Mix: 0.75 µl Total: 15 µl | DNA: 3.3 µl Nuclease-free water: 5 µl Ultra II End Prep Reaction Buffer: 1.2 µl Ultra II End Prep Enzyme Mix: 0.5 µl Total: 10 µl | DNA: 3.3 µl Nuclease-free water: 5 µl Ultra II End Prep Reaction Buffer: 1.2 µl Ultra II End Prep Enzyme Mix: 0.5 µl Total: 10 µl |
Native barcode ligation x24 | Nuclease-free water: 6 µl DNA 1.5 µl µl Native barcode: 2.5 µl Blunt/TA Ligase Master Mix: 10 µl Total: 20 µl | Nuclease-free water: 6 µl DNA 1.5 µl µl Native barcode: 2.5 µl Blunt/TA Ligase Master Mix: 10 µl Total: 20 µl | Nuclease-free water: 3 µl DNA 0.75 µl Native barcode: 1.25 µl Blunt/TA Ligase Master Mix: 5 µl Total: 10 µl |
Native barcode ligation for x48 and x96 | Nuclease-free water: 3 µl DNA: 0.75 µl Native barcode: 1.25 µl Blunt/TA Ligase Master Mix: 5 µl Total: 10 µl | Nuclease-free water: 3 µl DNA: 0.75 µl Native barcode: 1.25 µl Blunt/TA Ligase Master Mix: 5 µl Total: 10 µl | Same as Native barcode ligation for x24 (above) |
Pooled barcoded samples | 480 µl | 480 µl | Maximum 240 µl |
Native barcode ligation clean-up | SFB: 700 µl 80% ethanol wash | SFB: 700 µl 80% ethanol wash | SFB: 250 µl 70% ethanol wash |
Adapter ligation clean-up | 0.4X SPRI bead clean-up SFB: 125 µl | 0.4X SPRI bead clean-up SFB: 125 µl | 1.0X SPRI bead clean-up SFB: 250 µl |
Introduction to the protocol
To enable the support for the rapidly expanding user requests, the team at Oxford Nanopore Technologies have put together an end-to-end workflow based on the ARTIC Network protocols and analysis methods.
While this protocol is available in the Nanopore Community, we kindly ask users to ensure they are citing the members of the ARTIC network who have been behind the development of these methods.
This protocol is based on the ARTIC amplicon sequencing protocol for MinION for nCOV-2019 by Josh Quick. The protocol generates 400 bp amplicons in a tiled fashion across the whole SARS-CoV-2 genome. Some example data is shown in the Downstream analysis and expected results section, this is generated using human coronavirus 229E to show what would be expected when running this protocol with SARS-CoV-2 samples.
Primers were designed by Josh Quick using Primal Scheme; the primer sequences can be found here.
Steps in the sequencing workflow:
Prepare for your experiment you will need to:
- Extract your RNA
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Prepare your library You will need to:
- Reverse transcribe your RNA samples with random hexamers
- Amplify the samples by tiled PCR using separate primer pools
- Combine the primer pools, purify and quantify the PCR products
- Prepare the DNA ends for adapter attachment
- Ligate native barcodes supplied in the kit to the DNA ends and pool the samples
- Ligate the sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell and load your DNA library into the flow cell
Sequencing and analysis You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Start the EPI2ME software and select the barcoding workflow
Before starting
This protocol requires total RNA extracted from samples that have been screened by a suitable qPCR assay. Here we demonstrate the level of sensitivity and specificity by titrating total RNA extracted from cell culture infected with Human coronavirus 229E spiked into 100 ng human RNA extracted from GM12878 to give approximate figures.
Although not tested here, work performed by Josh Quick et al. on the Zika virus gives approximate dilution factors that may help reduction of inhibiting compounds that can be co-extracted from samples.
Note: this is a guideline and not currently tested for SARS-CoV-2.
qPCR ct | Dilution factor |
---|---|
18–35 | none |
15–18 | 1:10 |
12–15 | 1:100 |
When processing multiple samples at once, we recommend making master mixes with an additional 10% of the volume. We also recommend using pre- and post-PCR hoods when handling master mixes and samples. It is important to clean and/or UV irradiate these hoods between sample batches. Furthermore, to track and monitor cross-contamination events, it is important to run a negative control reaction at the reverse transcription stage using nuclease-free water instead of sample, and carrying this control through the rest of the prep.
To minimise the chance of pipetting errors when preparing primer mixes, we recommend ordering the tiling primers from IDT in a lab-ready format at 100 µM.
重要
Compatibility of this protocol
This protocol should only be used in combination with:
- Native Barcoding Expansion 1-12 (EXP-NBD104) and 13-24 (EXP-NBD114)
- Native Barcoding Expansion 96 (EXP-NBD196)
- Ligation Sequencing Kit (SQK-LSK109)
- FLO-MIN106 (R9.4.1) flow cells
- Flow Cell Wash Kit (EXP-WSH004)
- SFB Expantion (EXP-SFB001)
- Sequencing Auxiliary Kit (EXP-AUX001)
2. Equipment and consumables
材料
- Input RNA in 10 mM Tris-HCl, pH 8.0
- Ligation Sequencing Kit (SQK-LSK109)
- Native Barcoding Expansion 1-12 (EXP-NBD104) or 13-24 (EXP-NBD114)
- Native Barcoding Expansion 96 (EXP-NBD196)
- Flow Cell Priming Kit (EXP-FLP002)
- SFB Expansion (EXP-SFB001)
- Adapter Mix II Expansion (EXP-AMII001)
耗材
- LunaScript™ RT SuperMix Kit (NEB, cat # E3010)
- Q5® Hot Start High-Fidelity 2X Master Mix (NEB, cat # M0494)
- SARS-CoV-2 primers (lab-ready at 100 µM, IDT)
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Agencourt AMPure XP beads (Beckman Coulter™, A63881)
- 新制备的80%乙醇(用无核酸酶水配制)
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)
- NEB Blunt/TA 连接酶预混液(NEB,M0367)
- NEBNext® Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
- NEBNext 快速连接模块(NEB,E6056)
- DNA 12000 Kit & Reagents - optional (Agilent Technologies)
- 1.5 ml Eppendorf DNA LoBind离心管
- Eppendorf低吸附twin.tec®96孔PCR板,半裙边(Eppendorf™,0030129504)带热封
仪器
- Hula混匀仪(低速旋转式混匀仪)
- Magnetic rack suitable for 96-well PCR plates, e.g. DynaMag™-96 Side Skirted Magnet (Thermo Fisher, cat # 12027)
- 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
- 涡旋混匀仪
- 热循环仪
- Stepper pipette and tips
- 多通道移液枪和枪头
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
- 盛有冰的冰桶
- 计时器
可选仪器
- Agilent生物分析仪(或等效仪器)
- Qubit荧光计 (或用于质控检测的等效仪器)
- Eppendorf 5424 离心机(或等效器材)
- PCR hood with UV steriliser (optional but recommended to reduce cross-contamination)
- PCR-Cooler (Eppendorf)
Input RNA guidelines
Where sample RNA is added to the below reaction, it is likely advantageous to follow the dilution guidelines proposed by Josh Quick:
qPCR Ct | Dilution factor |
---|---|
18–35 | none |
15–18 | 1:10 |
12–15 | 1:100 |
If the sample has a low copy number (ct 18–35) use up to 16 µl of sample. Use nuclease-free water to make up any remaining volume. Take note to be aware that co-extracted compounds may inhibit reverse transcription and PCR.
Ligation Sequencing Kit contents (SQK-LSK109)
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (µl) |
---|---|---|---|---|
DNA CS | DCS | Yellow | 1 | 50 |
Adapter Mix | AMX | Green | 1 | 40 |
Ligation Buffer | LNB | Clear | 1 | 200 |
L Fragment Buffer | LFB | White cap, orange stripe on label | 2 | 1,800 |
S Fragment Buffer | SFB | Grey | 2 | 1,800 |
Sequencing Buffer | SQB | Red | 2 | 300 |
Elution Buffer | EB | Black | 1 | 200 |
Loading Beads | LB | Pink | 1 | 360 |
Flow Cell Priming Kit contents (EXP-FLP002)
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Flush Buffer | FB | Blue | 6 | 1,170 |
Flush Tether | FLT | Purple | 1 | 200 |
Native Barcoding Expansion 1-12 (EXP-NBD104) and 13-24 (EXP-NBD114) contents
EXP-NBD104 kit contents
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Native Barcode 01-12 | NB01-12 | White | 12 | 20 |
Adapter Mix II | AMII | Green | 1 | 40 |
**EXP-NBD114 kit contents** ![EXP-NBD114 kit contents](//images.ctfassets.net/76r1b51it64n/355IyPje5ymq4OOK6maywi/ebb06336aa81351f28d1bc46a1d968f4/EXP-NBD114_kit_contents.svg)
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Native Barcode 13-24 | NB13-24 | White | 12 | 20 |
Adapter Mix II | AMII | Green | 1 | 40 |
Native Barcoding Expansion 96 (EXP-NBD196) contents
Kits in batches NBD196.10.0007 onwards have barcodes ordered in columns on the plate:
Kits in batches prior to NBD196.10.0007 have barcodes ordered in rows:
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Native Barcode 01-96 | NB01-96 | - | 1 plate | 40 μl per well |
Adapter Mix II | AMII | Green | 1 | 70 |
SFB Expansion contents (EXP-SFB001)
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Short Fragment Buffer | SFB | Grey | 4 | 1,800 |
Adapter Mix II Expansion contents (EXP-AMII001)
Name | Acronym | Cap colour | No. of tubes | Fill volume per vial (μl) |
---|---|---|---|---|
Adapter Mix II | AMII | Green | 2 | 40 |
Adapter Mix II Expansion use
Protocols that use the Native Barcoding Expansions require 5 μl of AMII per reaction. Native Barcoding Expansions EXP-NBD104/NBD114 and EXP-NBD196 contain sufficient AMII for 6 and 12 reactions, respectively (or 12 and 24 reactions when sequencing on Flongle). This assumes that all barcodes are used in one sequencing run.
The Adapter Mix II expansion provides additional AMII for customers who are running subsets of barcodes, and allows a further 12 reactions (24 on Flongle).
Native barcode sequences
Below is the full list of our native barcode (NB01-96) sequences. The first 24 unique barcodes are available in the Native Barcoding Kit 24 V14 (SQK-NBD114.24). The Native Barcoding Kit 96 V14 (SQK-NBD114.96) include the first 24 native barcodes, with the additional 72 unique barcodes. The native barcodes are shipped at 640 nM.
In addition to the barcodes, there are also flanking sequences which add an extra level of context during analysis.
Barcode flanking sequences:
Forward sequence: 5' - AAGGTTAA - barcode - CAGCACCT - 3' Reverse sequence: 5' - GGTGCTG - barcode - TTAACCTTAGCAAT - 3'
Native barcode sequences
Component | Forward sequence | Reverse sequence |
---|---|---|
NB01 | CACAAAGACACCGACAACTTTCTT | AAGAAAGTTGTCGGTGTCTTTGTG |
NB02 | ACAGACGACTACAAACGGAATCGA | TCGATTCCGTTTGTAGTCGTCTGT |
NB03 | CCTGGTAACTGGGACACAAGACTC | GAGTCTTGTGTCCCAGTTACCAGG |
NB04 | TAGGGAAACACGATAGAATCCGAA | TTCGGATTCTATCGTGTTTCCCTA |
NB05 | AAGGTTACACAAACCCTGGACAAG | CTTGTCCAGGGTTTGTGTAACCTT |
NB06 | GACTACTTTCTGCCTTTGCGAGAA | TTCTCGCAAAGGCAGAAAGTAGTC |
NB07 | AAGGATTCATTCCCACGGTAACAC | GTGTTACCGTGGGAATGAATCCTT |
NB08 | ACGTAACTTGGTTTGTTCCCTGAA | TTCAGGGAACAAACCAAGTTACGT |
NB09 | AACCAAGACTCGCTGTGCCTAGTT | AACTAGGCACAGCGAGTCTTGGTT |
NB10 | GAGAGGACAAAGGTTTCAACGCTT | AAGCGTTGAAACCTTTGTCCTCTC |
NB11 | TCCATTCCCTCCGATAGATGAAAC | GTTTCATCTATCGGAGGGAATGGA |
NB12 | TCCGATTCTGCTTCTTTCTACCTG | CAGGTAGAAAGAAGCAGAATCGGA |
NB13 | AGAACGACTTCCATACTCGTGTGA | TCACACGAGTATGGAAGTCGTTCT |
NB14 | AACGAGTCTCTTGGGACCCATAGA | TCTATGGGTCCCAAGAGACTCGTT |
NB15 | AGGTCTACCTCGCTAACACCACTG | CAGTGGTGTTAGCGAGGTAGACCT |
NB16 | CGTCAACTGACAGTGGTTCGTACT | AGTACGAACCACTGTCAGTTGACG |
NB17 | ACCCTCCAGGAAAGTACCTCTGAT | ATCAGAGGTACTTTCCTGGAGGGT |
NB18 | CCAAACCCAACAACCTAGATAGGC | GCCTATCTAGGTTGTTGGGTTTGG |
NB19 | GTTCCTCGTGCAGTGTCAAGAGAT | ATCTCTTGACACTGCACGAGGAAC |
NB20 | TTGCGTCCTGTTACGAGAACTCAT | ATGAGTTCTCGTAACAGGACGCAA |
NB21 | GAGCCTCTCATTGTCCGTTCTCTA | TAGAGAACGGACAATGAGAGGCTC |
NB22 | ACCACTGCCATGTATCAAAGTACG | CGTACTTTGATACATGGCAGTGGT |
NB23 | CTTACTACCCAGTGAACCTCCTCG | CGAGGAGGTTCACTGGGTAGTAAG |
NB24 | GCATAGTTCTGCATGATGGGTTAG | CTAACCCATCATGCAGAACTATGC |
NB25 | GTAAGTTGGGTATGCAACGCAATG | CATTGCGTTGCATACCCAACTTAC |
NB26 | CATACAGCGACTACGCATTCTCAT | ATGAGAATGCGTAGTCGCTGTATG |
NB27 | CGACGGTTAGATTCACCTCTTACA | TGTAAGAGGTGAATCTAACCGTCG |
NB28 | TGAAACCTAAGAAGGCACCGTATC | GATACGGTGCCTTCTTAGGTTTCA |
NB29 | CTAGACACCTTGGGTTGACAGACC | GGTCTGTCAACCCAAGGTGTCTAG |
NB30 | TCAGTGAGGATCTACTTCGACCCA | TGGGTCGAAGTAGATCCTCACTGA |
NB31 | TGCGTACAGCAATCAGTTACATTG | CAATGTAACTGATTGCTGTACGCA |
NB32 | CCAGTAGAAGTCCGACAACGTCAT | ATGACGTTGTCGGACTTCTACTGG |
NB33 | CAGACTTGGTACGGTTGGGTAACT | AGTTACCCAACCGTACCAAGTCTG |
NB34 | GGACGAAGAACTCAAGTCAAAGGC | GCCTTTGACTTGAGTTCTTCGTCC |
NB35 | CTACTTACGAAGCTGAGGGACTGC | GCAGTCCCTCAGCTTCGTAAGTAG |
NB36 | ATGTCCCAGTTAGAGGAGGAAACA | TGTTTCCTCCTCTAACTGGGACAT |
NB37 | GCTTGCGATTGATGCTTAGTATCA | TGATACTAAGCATCAATCGCAAGC |
NB38 | ACCACAGGAGGACGATACAGAGAA | TTCTCTGTATCGTCCTCCTGTGGT |
NB39 | CCACAGTGTCAACTAGAGCCTCTC | GAGAGGCTCTAGTTGACACTGTGG |
NB40 | TAGTTTGGATGACCAAGGATAGCC | GGCTATCCTTGGTCATCCAAACTA |
NB41 | GGAGTTCGTCCAGAGAAGTACACG | CGTGTACTTCTCTGGACGAACTCC |
NB42 | CTACGTGTAAGGCATACCTGCCAG | CTGGCAGGTATGCCTTACACGTAG |
NB43 | CTTTCGTTGTTGACTCGACGGTAG | CTACCGTCGAGTCAACAACGAAAG |
NB44 | AGTAGAAAGGGTTCCTTCCCACTC | GAGTGGGAAGGAACCCTTTCTACT |
NB45 | GATCCAACAGAGATGCCTTCAGTG | CACTGAAGGCATCTCTGTTGGATC |
NB46 | GCTGTGTTCCACTTCATTCTCCTG | CAGGAGAATGAAGTGGAACACAGC |
NB47 | GTGCAACTTTCCCACAGGTAGTTC | GAACTACCTGTGGGAAAGTTGCAC |
NB48 | CATCTGGAACGTGGTACACCTGTA | TACAGGTGTACCACGTTCCAGATG |
NB49 | ACTGGTGCAGCTTTGAACATCTAG | CTAGATGTTCAAAGCTGCACCAGT |
NB50 | ATGGACTTTGGTAACTTCCTGCGT | ACGCAGGAAGTTACCAAAGTCCAT |
NB51 | GTTGAATGAGCCTACTGGGTCCTC | GAGGACCCAGTAGGCTCATTCAAC |
NB52 | TGAGAGACAAGATTGTTCGTGGAC | GTCCACGAACAATCTTGTCTCTCA |
NB53 | AGATTCAGACCGTCTCATGCAAAG | CTTTGCATGAGACGGTCTGAATCT |
NB54 | CAAGAGCTTTGACTAAGGAGCATG | CATGCTCCTTAGTCAAAGCTCTTG |
NB55 | TGGAAGATGAGACCCTGATCTACG | CGTAGATCAGGGTCTCATCTTCCA |
NB56 | TCACTACTCAACAGGTGGCATGAA | TTCATGCCACCTGTTGAGTAGTGA |
NB57 | GCTAGGTCAATCTCCTTCGGAAGT | ACTTCCGAAGGAGATTGACCTAGC |
NB58 | CAGGTTACTCCTCCGTGAGTCTGA | TCAGACTCACGGAGGAGTAACCTG |
NB59 | TCAATCAAGAAGGGAAAGCAAGGT | ACCTTGCTTTCCCTTCTTGATTGA |
NB60 | CATGTTCAACCAAGGCTTCTATGG | CCATAGAAGCCTTGGTTGAACATG |
NB61 | AGAGGGTACTATGTGCCTCAGCAC | GTGCTGAGGCACATAGTACCCTCT |
NB62 | CACCCACACTTACTTCAGGACGTA | TACGTCCTGAAGTAAGTGTGGGTG |
NB63 | TTCTGAAGTTCCTGGGTCTTGAAC | GTTCAAGACCCAGGAACTTCAGAA |
NB64 | GACAGACACCGTTCATCGACTTTC | GAAAGTCGATGAACGGTGTCTGTC |
NB65 | TTCTCAGTCTTCCTCCAGACAAGG | CCTTGTCTGGAGGAAGACTGAGAA |
NB66 | CCGATCCTTGTGGCTTCTAACTTC | GAAGTTAGAAGCCACAAGGATCGG |
NB67 | GTTTGTCATACTCGTGTGCTCACC | GGTGAGCACACGAGTATGACAAAC |
NB68 | GAATCTAAGCAAACACGAAGGTGG | CCACCTTCGTGTTTGCTTAGATTC |
NB69 | TACAGTCCGAGCCTCATGTGATCT | AGATCACATGAGGCTCGGACTGTA |
NB70 | ACCGAGATCCTACGAATGGAGTGT | ACACTCCATTCGTAGGATCTCGGT |
NB71 | CCTGGGAGCATCAGGTAGTAACAG | CTGTTACTACCTGATGCTCCCAGG |
NB72 | TAGCTGACTGTCTTCCATACCGAC | GTCGGTATGGAAGACAGTCAGCTA |
NB73 | AAGAAACAGGATGACAGAACCCTC | GAGGGTTCTGTCATCCTGTTTCTT |
NB74 | TACAAGCATCCCAACACTTCCACT | AGTGGAAGTGTTGGGATGCTTGTA |
NB75 | GACCATTGTGATGAACCCTGTTGT | ACAACAGGGTTCATCACAATGGTC |
NB76 | ATGCTTGTTACATCAACCCTGGAC | GTCCAGGGTTGATGTAACAAGCAT |
NB77 | CGACCTGTTTCTCAGGGATACAAC | GTTGTATCCCTGAGAAACAGGTCG |
NB78 | AACAACCGAACCTTTGAATCAGAA | TTCTGATTCAAAGGTTCGGTTGTT |
NB79 | TCTCGGAGATAGTTCTCACTGCTG | CAGCAGTGAGAACTATCTCCGAGA |
NB80 | CGGATGAACATAGGATAGCGATTC | GAATCGCTATCCTATGTTCATCCG |
NB81 | CCTCATCTTGTGAAGTTGTTTCGG | CCGAAACAACTTCACAAGATGAGG |
NB82 | ACGGTATGTCGAGTTCCAGGACTA | TAGTCCTGGAACTCGACATACCGT |
NB83 | TGGCTTGATCTAGGTAAGGTCGAA | TTCGACCTTACCTAGATCAAGCCA |
NB84 | GTAGTGGACCTAGAACCTGTGCCA | TGGCACAGGTTCTAGGTCCACTAC |
NB85 | AACGGAGGAGTTAGTTGGATGATC | GATCATCCAACTAACTCCTCCGTT |
NB86 | AGGTGATCCCAACAAGCGTAAGTA | TACTTACGCTTGTTGGGATCACCT |
NB87 | TACATGCTCCTGTTGTTAGGGAGG | CCTCCCTAACAACAGGAGCATGTA |
NB88 | TCTTCTACTACCGATCCGAAGCAG | CTGCTTCGGATCGGTAGTAGAAGA |
NB89 | ACAGCATCAATGTTTGGCTAGTTG | CAACTAGCCAAACATTGATGCTGT |
NB90 | GATGTAGAGGGTACGGTTTGAGGC | GCCTCAAACCGTACCCTCTACATC |
NB91 | GGCTCCATAGGAACTCACGCTACT | AGTAGCGTGAGTTCCTATGGAGCC |
NB92 | TTGTGAGTGGAAAGATACAGGACC | GGTCCTGTATCTTTCCACTCACAA |
NB93 | AGTTTCCATCACTTCAGACTTGGG | CCCAAGTCTGAAGTGATGGAAACT |
NB94 | GATTGTCCTCAAACTGCCACCTAC | GTAGGTGGCAGTTTGAGGACAATC |
NB95 | CCTGTCTGGAAGAAGAATGGACTT | AAGTCCATTCTTCTTCCAGACAGG |
NB96 | CTGAACGGTCATAGAGTCCACCAT | ATGGTGGACTCTATGACCGTTCAG |
3. 计算机要求及软件
MinION Mk1B的IT配置要求
请为MinION Mk1B配备一台高规格的计算机或笔记本电脑,以适配数据采集的速度。您可以在MinION Mk1B的IT配置要求文件中了解更多。
MinION Mk1C的IT配置要求
MinION Mk1C是一款集计算功能和触控屏幕于一体的便携式测序分析仪,它无需依赖任何额外设备,即可生成并分析纳米孔测序数据。您可以在 MinION Mk1C的IT配置要求文件中了解更多。
MinION Mk1D IT requirements
Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.
Software for nanopore sequencing
MinKNOW
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
EPI2ME (optional)
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.
测序芯片质检
我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片12周之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :
测序芯片 | 芯片上的活性孔数确保不少于 |
---|---|
Flongle 测序芯片 | 50 |
MinION/GridION 测序芯片 | 800 |
PromethION 测序芯片 | 5000 |
** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。
4. Reverse transcription
材料
- Input RNA in 10 mM Tris-HCl, pH 8.0
耗材
- LunaScript™ RT SuperMix Kit (NEB, cat # E3010)
- 1.5 ml Eppendorf DNA LoBind离心管
- Eppendorf低吸附twin.tec®96孔PCR板,半裙边(Eppendorf™,0030129504)带热封
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
仪器
- P200 移液枪和枪头
- P2移液枪和枪头
- 热循环仪
- 迷你离心机
- 盛有冰的冰桶
可选仪器
- PCR-Cooler (Eppendorf)
- PCR hood with UV steriliser (optional but recommended to reduce cross-contamination)
重要
Keep the RNA sample on ice as much as possible to prevent nucleolytic degradation, which may affect sensitivity.
In a clean pre-PCR hood, using a stepper pipette, or a multichannel pipette, add 4 µl of LunaScript™ RT SuperMix to a fresh 96-well plate (RT Plate).
Depending on the number of samples, fill each well per column as follows:
Plate location | X24 samples | X48 samples | X96 samples |
---|---|---|---|
Columns | 1-3 | 1-6 | 1-12 |
To each well containing LunaScript reagent of the RT plate, add 16 µl of sample and gently mix by pipetting. If adding less than 16 µl, make up the rest of the volume with nuclease-free water.
Example for X48 samples:
Seal the RT plate and spin down. Return the plate to ice.
Preheat the thermal cycler to 25°C.
Incubate the samples in the thermal cycler using the following program:
Step | Temperature | Time | Cycles |
---|---|---|---|
Primer annealing | 25°C | 2 min | 1 |
cDNA synthesis | 55°C | 10 min | 1 |
Heat inactivation | 95°C | 1 min | 1 |
Hold | 4°C | ∞ |
步骤结束
While the reverse transcription reaction is running, prepare the primer pools as described in the next section.
5. PCR and clean-up
耗材
- SARS-CoV-2 primers (lab-ready at 100 µM, IDT)
- Q5® Hot Start High-Fidelity 2X Master Mix (NEB, cat # M0494)
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Agencourt AMPure XP beads (Beckman Coulter™, A63881)
- 新制备的80%乙醇(用无核酸酶水配制)
- 1.5 ml Eppendorf DNA LoBind离心管
- Eppendorf低吸附twin.tec®96孔PCR板,半裙边(Eppendorf™,0030129504)带热封
仪器
- 迷你离心机
- 热循环仪
- Hula混匀仪(低速旋转式混匀仪)
- Magnetic rack suitable for 96-well plates
- 多通道移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
可选仪器
- Qubit荧光计(或用于质控检测的等效仪器)
- Agilent Bioanalyzer (or equivalent)
- PCR hood with UV steriliser (optional but recommended to reduce cross-contamination)
Primer design
To generate tiled PCR amplicons from the SARS-CoV-2 viral cDNA, primers were designed by Josh Quick using Primal Scheme. These primers are designed to generate 400 bp amplicons that overlap by approximately 20 bp. These primer sequences can be found here. Where we show example data outputs in this protocol, the same parameters were used to design primers to the human coronavirus 229E to provide guideline statistics.
重要
We recommend ordering the required primers from IDT in a lab-ready format at 100 µM. However, if primers have been ordered lyophilised, they should be resuspended in water or low-EDTA TE buffer to a final concentration of 100 µM.
重要
We recommend handling the primer stocks and derivatives in a clean template-free PCR hood.
Dilute each 100 µM stock 1 in 10 with nuclease-free water to form a working stock of each pool at 10 µM.
Note: To achieve the desired final concentration of each primer in the pool at 0.015 µM in the PCR reaction, 3.7 µl of the 10 µM working stock is needed for each PCR reaction. Two separate PCR reactions will be performed per sample, one for pool A primers and one for pool B. This results in tiled amplicons that have approximately 20 bp overlap.
In the pre-PCR hood, prepare the following master mixes in Eppendorf DNA LoBind tubes and mix thoroughly as follows:
Per sample:
Reagent | Pool A | Pool B |
---|---|---|
RNase-free water | 3.8 µl | 3.8 µl |
Primer pool A (10 µM) | 3.7 µl | - |
Primer pool B (10 µM) | - | 3.7 µl |
Q5® Hot Start HF 2x Master Mix | 12.5 µl | 12.5 µl |
Total | 20 µl | 20 µl |
For x24 samples:
Reagent | Pool A | Pool B |
---|---|---|
RNase-free water | 95 µl | 95 µl |
Primer pool A (10 µM) | 92.5 µl | - |
Primer pool B (10 µM) | - | 92.5 µl |
Q5® Hot Start HF 2x Master Mix | 312.5 µl | 312.5 µl |
Total | 500 µl | 500 µl |
For x48 samples:
Reagent | Pool A | Pool B |
---|---|---|
RNase-free water | 190 µl | 190 µl |
Primer pool A (10 µM) | 185 µl | - |
Primer pool B (10 µM) | - | 185 µl |
Q5® Hot Start HF 2x Master Mix | 625 µl | 625 µl |
Total | 1000 µl | 1000 µl |
For x96 samples:
Reagent | Pool A | Pool B |
---|---|---|
RNase-free water | 380 µl | 380 µl |
Primer pool A (10 µM) | 370 µl | - |
Primer pool B (10 µM) | - | 370 µl |
Q5® Hot Start HF 2x Master Mix | 1250 µl | 1250 µl |
Total | 2000 µl | 2000 µl |
Using a stepper pipette or a multichannel pipette, aliquot 20 µl of Pool A and Pool B into a clean 96-well plate(s) as follows:
Plate location | X24 samples | X48 samples | X96 samples |
---|---|---|---|
Columns | Pool A: 1-3 Pool B: 4-6 | Pool A: 1-6 Pool B: 7-12 | Pool A: 1-12 Pool B: 1-12 |
Note: For x96 samples, Pool A is a separate plate to Pool B.
Using a multichannel pipette, transfer 5 µl of each RT reaction from the RT plate to the corresponding well for both Pool A and Pool B of the PCR plate(s). Mix by pipetting the contents of each well up and down.
There should be two PCR reactions per sample.
Example for X48 samples:
重要
Carry forward the negative control from the reverse transcription reaction to monitor cross-contamination events.
We recommend having a single negative for every plate of samples and a standard curve of positive controls.
Seal the plate(s) and spin down briefly.
Incubate using the following program, with the heated lid set to 105°C:
Step | Temperature | Time | Cycles |
---|---|---|---|
Initial denaturation | 98°C | 30 sec | 1 |
Denaturation Annealing and extension | 98°C 65°C | 15 sec 5 min | 25–35 |
Hold | 4°C | ∞ |
Note: Cycle number should be varied for low or high viral load samples. Guidelines provided by Josh Quick suggest that 25 cycles should be used for Ct 18–21 up to a maximum of 35 cycles for Ct 35, however this has not been tested here.
重要
If available, a clean post-PCR hood should be used for all steps that involve handling amplified material. Decontamination with UV and or DNAzap between sample batches is recommended.
Once PCR is complete, using a multichannel pipette, transfer 25 µl of each well of PCR Pool B to the corresponding well of PCR Pool A and mix by pipetting.
Depending on the number of samples, Pool B columns will correspond to different Pool A columns.
No. of samples | Pool B column | Corresponding Pool A column |
---|---|---|
x24 | 4 5 6 | 1 2 3 |
x48 | 7 8 9 10 11 12 | 1 2 3 4 5 6 |
x96 | 1 2 3 4 5 6 7 8 9 10 11 12 | 1 2 3 4 5 6 7 8 9 10 11 12 |
Example for X48 samples:
Resuspend the AMPure XP beads by vortexing.
Add 50 µl of resuspended AMPure XP beads to each well and mix by gently pipetting.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Prepare 50 ml of fresh 80% ethanol in nuclease-free water.
Spin down the 96-well plate and pellet the beads on a magnet for 5 minutes. Keep the plate on the magnet until the eluate is clear and colourless, and pipette off the supernatant.
Keep the plate on the magnet and wash the beads in each well with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
Repeat the previous step.
Spin down and place the plate back on the magnet. Pipette off any residual ethanol. Allow to dry for ~ 30 seconds, but do not dry the pellet to the point of cracking.
Remove the plate from the magnetic rack and resuspend each pellet in 15 µl nuclease-free water. Incubate for 2 minutes at room temperature.
Pellet the beads on a magnet until the eluate is clear and colourless.
Remove and retain 15 µl of eluate containing the DNA library per well, into a clean 96-well plate.
Dispose of the pelleted beads.
CHECKPOINT
Quantify 1 µl of each eluted sample using a Qubit fluorometer.
Store any unused amplified material at -20°C for use in later experiments.
Expected results
During initial method development, it is useful to analyse 1 µl on an Agilent Bioanalyzer chip or an appropriate amount on an agarose gel. The traces below show expected results where a dilution series of coronavirus 229E was spiked into 100 ng of human RNA extracted from GM12878 (primers were designed against the human coronavirus 229E reference genome using Primal Scheme). Here, Qubit hsDNA results and Agilent Bioanalyser (DNA 12000 assay) traces are shown for 30 and 35 cycles of PCR with input concentrations ranging from 10 pg to 0.001 pg in 100 ng human RNA. While not directly comparable to Ct values of a real biological sample, these give a rough approximation of high to low viral titres. A human-only and reverse transcription negative control were also included.
Note: The viral RNA that was used for this spike-in experiment was obtained from ATCC and is total RNA extracted from human cell lines infected with coronavirus 229E. So, 10 pg of spike-in represents a mix of human and viral RNA, spiked into 100 ng of human RNA extracted from GM12878 cells.
Figure 1. DNA yield after PCR and AMPure XP clean-up for decreasing viral input and different PCR cycle numbers in a background of 100 ng human RNA.
For a 400 bp amplicon, approximately 50 ng (~0.2 pmol) is required for the end-prep step. PCR cycles can be adjusted based on initial results to minimise the number of cycles. For samples that provide less than 50 ng total yield, further PCRs may be carried out on the remaining reverse transcription reaction.
Figure 2. Bioanalyser traces of 1 µl of post-PCR cleaned up samples with decreasing input quantities, spiked into 100 ng human RNA amplified with 30 and 35 cycles. RT negative controls and human-only negative controls show no product in the 300–400 bp range.
6. End-prep
耗材
- 无核酸酶水(如ThermoFisher,AM9937)
- NEBNext® Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
- 1.5 ml Eppendorf DNA LoBind 离心管
- Eppendorf低吸附twin.tec®96孔PCR板,半裙边(Eppendorf™,0030129504)带热封
仪器
- 多通道移液枪和枪头
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P10 移液枪和枪头
- 热循环仪
- 迷你离心机
- 盛有冰的冰桶
重要
For optimal efficiency of the end-prep reaction, use ~200 fmol (50 ng for 400 bp amplicons) of cDNA from the previous step.
重要
We recommended carrying the RT negative control through this step until sequencing.
Determine the volume of the cleaned-up PCR reaction that yields 200 fmol (50 ng) of DNA per sample and aliquot in a clean 96-well plate.
Prepare the NEBNext Ultra II End Repair/dA-Tailing Module reagents according to the manufacturer’s instructions, and place on ice.
For optimal performance, NEB recommend the following:
- Thaw all reagents on ice.
- Flick and/or invert reagent tube to ensure they are well mixed.
- Always spin down tubes before opening for the first time each day.
- The Ultra II End prep buffer and FFPE DNA Repair buffer may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for several seconds to ensure the reagent is thoroughly mixed.
- The FFPE DNA repair buffer may have a yellow tinge and is fine to use if yellow.
Make up each sample per well to 12.5 µl using nuclease-free water.
Prepare the following end-prep master mix in a 1.5 ml Eppendorf DNA LoBind tube and mix thoroughly.
Reagent | Volume per sample | Volume x24 samples | Volume x48 samples | Volume x96 samples |
---|---|---|---|---|
NEBNext Ultra II End Prep Reaction Buffer | 1.75 µl | 52.5 µl | 105 µl | 210 µl |
NEBNext Ultra II End Prep Enzyme Mix | 0.75 µl | 22.5 µl | 45 µl | 90 µl |
Total | 2.5 µl | 75 µl | 150 µl | 300 µl |
Using a stepper pipette, or a multichannel pipette, aliquot 2.5 µl of the end-prep master mix per sample (End-prep Plate) and keep on ice.
Depending on the number of samples, aliquot into each well of the columns as follows:
Plate location | X24 samples | X48 samples | X96 samples |
---|---|---|---|
Columns | 1-3 | 1-6 | 1-12 |
Seal the plate(s) and spin down briefly.
使用热循环仪,在20℃下孵育5分钟,然后在65℃下孵育5分钟。
步骤结束
Take forward the end-prepped DNA into the native barcode ligation step. However, at this point it is also possible to store the sample at 4°C overnight.
7. Native barcode ligation
材料
- 免扩增条形码(NB01-24)
- 免扩增条形码(NB01-NB96)
- 短片段缓冲液(SFB)
耗材
- 新制备的80%乙醇(用无核酸酶水配制)
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
- Agencourt AMPure XP beads (Beckman Coulter, A63881)
- NEB Blunt/TA 连接酶预混液(NEB,M0367)
仪器
- Magnetic rack suitable for 96-well plates
- 热循环仪
- Hula混匀仪(低速旋转式混匀仪)
- 涡旋混匀仪
- 盛有冰的冰桶
- 迷你离心机
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P10 移液枪和枪头
可选仪器
- Qubit荧光计 (或用于质控检测的等效仪器)
重要
To monitor cross-contamination events, we recommend that the RT negative control is carried through this process and a barcode is used to sequence this control.
Thaw the native barcodes at room temperature. Use one barcode per sample. Individually mix the barcodes by pipetting, spin down, and place them on ice.
Thaw the tube of Short Fragment Buffer (SFB) at room temperature, mix by vortexing, spin down and place on ice.
Select a unique barcode for every sample to be run.
Using a stepper pipette, or a multichannel pipette, make up the Native Barcode Ligation Plate in a clean 96-well plate. Add the reagents in the following order per well:
Reagent | Volume per well for up to x24 samples | Volume per well for x25—x96 samples |
---|---|---|
Nuclease-free water | 6 µl | 3 µl |
End-prepped DNA Note: Transfer to the corresponding well | 1.5 µl | 0.75 µl |
Native barcode Note: Transfer to the corresponding well | 2.5 µl | 1.25 µl |
Blunt/TA Ligation Master Mix | 10 µl | 5 µl |
Total | 20 µl | 10 µl |
Depending on the number of samples, aliquot to each well of the columns:
Plate location | x24 samples | x48 samples | x96 samples |
---|---|---|---|
Columns | 1-3 | 1-6 | 1-12 |
Mix the contents thoroughly by pipetting.
Seal the plate(s) and spin down briefly.
Using a thermal cycler, incubate at 20°C for 20 mins and at 65°C for 10 mins.
Pool the barcoded samples.
- For up to x24 samples, we expect ~20 µl per sample.
- For x25—x96 samples, we expect ~10 µl per sample.
x24 samples | x48 samples | x96 samples | |
---|---|---|---|
Total volume | ~480 µl | ~480 µl | ~960 µl |
Take forward 480 µl of the pooled barcoded samples.
提示
For x96 samples, there will be enough pooled reaction remaining for a second library to be prepared. This can be stored at –20°C for later use.
Resuspend the AMPure XP beads by vortexing.
Add 192 µl of resuspended AMPure XP beads to the 480 µl of pooled barcoded reaction and mix by pipetting.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Prepare 500 µl of fresh 80% ethanol in nuclease-free water.
Spin down the sample and pellet the beads on a magnet for 5 minutes. Keep the tube on the magnet until the eluate is clear and colourless, and pipette off the supernatant.
Wash the beads by adding 700 μl Short Fragment Buffer (SFB). Flick the beads to resuspend, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
重复上述步骤。
Keep the tube on the magnet and wash the beads with 100 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。
Remove the tube from the magnetic rack and resuspend the pellet in 35 µl nuclease-free water. Incubate for 2 minutes at room temperature.
将离心管静置于磁力架上,直到磁珠和液相分离,且洗脱液澄清无色。
Remove and retain 35 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Quantify 1 µl of eluted sample using a Qubit fluorometer - recovery aim 2 ng/μl.
步骤结束
Take forward 30-50 ng of pooled barcoded samples in 30 µl into the adapter ligation and clean-up step.
8. Adapter ligation and clean-up
材料
- Oxford Nanopore测序试剂盒中的洗脱缓冲液(EB)
- Short Fragment Buffer (SFB)
- Adapter Mix II (AMII)
耗材
- NEBNext 快速连接模块(NEB,E6056)
- Agencourt AMPure XP beads (Beckman Coulter™, A63881)
- 1.5 ml Eppendorf DNA LoBind 离心管
仪器
- 迷你离心机
- 磁力架
- 涡旋混匀仪
- Hula混匀仪(低速旋转式混匀仪)
可选仪器
- Qubit荧光计(或用于质控检测的等效仪器)
Adapter Mix II Expansion use
Protocols that use the Native Barcoding Expansions require 5 μl of AMII per reaction. Native Barcoding Expansions EXP-NBD104/NBD114 and EXP-NBD196 contain sufficient AMII for 6 and 12 reactions, respectively (or 12 and 24 reactions when sequencing on Flongle). This assumes that all barcodes are used in one sequencing run.
The Adapter Mix II expansion provides additional AMII for customers who are running subsets of barcodes, and allows a further 12 reactions (24 on Flongle).
Thaw the Elution Buffer (EB), Short Fragment Buffer (SFB), and NEBNext Quick Ligation Reaction Buffer (5x) at room temperature and mix by vortexing. Then spin down and place on ice. Check the contents of each tube are clear of any precipitate.
Spin down the T4 Ligase and the Adapter Mix II (AMII), and place on ice.
Taking the pooled and barcoded DNA, perform adapter ligation as follows, mixing by flicking the tube between each sequential addition.
Reagent | Volume |
---|---|
Pooled barcoded sample (30-50 ng) | 30 µl |
Adapter Mix II (AMII) | 5 µl |
NEBNext Quick Ligation Reaction Buffer (5X) | 10 µl |
Quick T4 DNA Ligase | 5 µl |
Total | 50 µl |
Ensure the components are thoroughly mixed by pipetting, and spin down.
Incubate the reaction for 10 minutes at room temperature.
重要
The next clean-up step uses Short Fragment Buffer (SFB) and not 80% ethanol to wash the beads. The use of ethanol will be detrimental to the sequencing reaction.
Resuspend the AMPure XP beads by vortexing.
Add 20 µl of resuspended AMPure XP beads to the reaction and mix by pipetting.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Spin down the sample and pellet the beads on a magnet for 5 minutes. Keep the tube on the magnet until the eluate is clear and colourless, and pipette off the supernatant.
Wash the beads by adding 125 μl Short Fragment Buffer (SFB). Flick the beads to resuspend, then return the tube to the magnetic rack and allow the beads to pellet. Keep the tube on the magnet until the eluate is clear and colourless. Remove the supernatant using a pipette and discard.
重复上述步骤。
Spin down and place the tube back on the magnet. Pipette off any residual supernatant. Allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
Remove the tube from the magnetic rack and resuspend the pellet by pipetting in 15 µl Elution Buffer (EB). Spin down and incubate for 5 minutes at room temperature.
将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。
Remove and retain 15 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.
Dispose of the pelleted beads
CHECKPOINT
取1µl洗脱样品,用Qubit荧光计定量。
重要
We recommend loading ~15 ng of final prepared library onto a flow cell.
Loading more than the recommend loading input can have a detrimental effect on output. Dilute the library in Elution Buffer (EB) if required.
步骤结束
构建好的文库即可用于测序芯片上样。在上样前,请将文库置于冰上。
提示
文库保存建议
若为 短期 保存或重复使用(例如在清洗芯片后再次上样),我们建议将文库置于Eppendorf LoBind 离心管中 4℃ 保存。 若为一次性使用且储存时长 __超过3个月__,我们建议将文库置于Eppendorf LoBind 离心管中 -80℃ 保存。
可选操作
If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.
Additional buffer for doing this can be found in the Sequencing Auxiliary Vials expansion (EXP-AUX001), available to purchase separately. This expansion also contains additional vials of Sequencing Buffer (SQB) and Loading Beads (LB), required for loading the libraries onto flow cells.
9. Priming and loading the SpotON flow cell
材料
- Flow Cell Priming Kit (EXP-FLP002)
- Loading Beads (LB)
- Sequencing Buffer (SQB)
耗材
- 1.5 ml Eppendorf DNA LoBind 离心管
- 无核酸酶水(如ThermoFisher,AM9937)
仪器
- MinION Mk1B or Mk1C
- SpotON Flow Cell
- P1000 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing, and spin down at room temperature.
To prepare the flow cell priming mix, add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.
Open the MinION device lid and slide the flow cell under the clip.
Press down firmly on the flow cell to ensure correct thermal and electrical contact.
顺时针转动预处理孔孔盖,使预处理孔显露出来。
重要
从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。
将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:
- 将P1000移液枪转至200µl刻度。
- 将枪头垂直插入预处理孔中。
- 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
__请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。
通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。
Thoroughly mix the contents of the Loading Beads (LB) by pipetting.
重要
The Loading Beads (LB) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.
In a new tube, prepare the library for loading as follows:
Reagent | Volume per flow cell |
---|---|
Sequencing Buffer (SQB) | 37.5 µl |
Loading Beads (LB), mixed immediately before use | 25.5 µl |
DNA library | 12 µl |
Total | 75 µl |
Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer (SQB) and Loading Beads (LB) because the fuel in the buffer will start to be consumed by the adapter.
完成测序芯片的预处理:
- 轻轻地翻起SpotON上样孔盖,使SpotON上样孔显露出来。
- 通过预处理孔(而 非 SpotON加样孔)向芯片中加入200µl预处理液,避免引入气泡。
临上样前,用移液枪轻轻吹打混匀制备好的文库。
通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。
Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the MinION device lid.
10. Data acquisition and basecalling
纳米孔数据分析概览
有关纳米孔数据分析的完整概述,包括碱基识别和次级分析,请参阅 数据分析 文档。
如何开始测序
MinKNOW软件负责仪器控制,数据采集和实时碱基识别。如您已在计算机上安装MinKNOW,则可选择以下几种途径开展测序:
1. 使用计算机上的MinKNOW进行实时数据采集和碱基识别
请按照 MinKNOW 实验指南 的说明操作:从“开始测序”部分起,到“MinKNOW运行结束”部分止。
2. 使用MinION Mk1B/Mk1D测序仪进行实时数据采集和碱基识别
请按照 MinION Mk1B 用户手册 或 MinION Mk1D 用户手册中的说明操作。
3. 使用MinION Mk1C测序仪进行实时数据采集和碱基识别
请参照 MinION Mk1C 用户手册中的说明操作。
4. 使用GridION进行实时数据采集和碱基识别
请参照 GridION 用户手册 中的说明操作。
5. 使用PromethION测序仪进行实时数据采集和碱基识别
请参照 PromethION 用户手册 或 PromethION 2 Solo 用户手册中的说明操作。
6. 使用计算机上的MinKNOW进行数据采集,过后再用NinKNOW进行线下碱基识别
请按照 MinKNOW 实验指南 中的说明操作:从“开始测序”部分起,到“MinKNOW运行结束”部分止。 当您设置实验参数时,请将 碱基识别 选项设为“关”。 测序实验结束后,请按照 MinKNOW 实验指南的本地分析 部分操作。
重要
Required settings in MinKNOW
When setting the sequencing parameters in MinKNOW, in the Basecalling set barcoding as Enabled, and in the barcoding options, toggle Barcode both ends, Mid-read barcodes and Override minimum mid barcoding score to ON and set Minimum mid barcoding score to 50. Optional: basecalling and/or demultiplexing of sequences can be performed using the stand-alone Guppy software.
11. Downstream analysis and expected results
Recommended analysis pipeline
The recommended workflows for the bioinformatics analyses are provided by the ARTIC network and are documented on their web pages at https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html.
The reference guided genome assembly and variant calling are also performed according to the bioinformatics protocol provided by the ARTIC network. Their best practices guide uses the software contained within the FieldBioinformatics project on GitHub.
This workflow uses only the basecalled FASTQ files to perform a high-quality reference-guided assembly of the SARS-CoV-2 genome. Sequenced reads are re-demultiplexed with the requirement that reads must contain a barcode at both ends of the sequence (this only applies to the Classic and Eco PCR tiling of SARS-CoV-2 protocols but not the Rapid Barcoding PCR tiling of SARS-CoV-2), and must not contain internal barcodes. The reads are mapped to the reference genome, primer sequences are excluded and the consensus sequence is polished. The Medaka software is used to call single-nucleotide variants while the ARTIC software reports the high-quality consensus sequence from the workflow.
To further simplify the installation of the coronavirus bioinformatics protocols, the workflows have been packaged into two EPI2ME products
The FieldBioinformatics workflow for SARS-CoV-2 sequence analysis is provided as a Jupyter notebook tutorial in the EPI2ME Labs software. The coronavirus workflow has been augmented to include additional steps that help with the quality control of individual libraries, and aid in the presentation of summary statistics and the final sets of called variants.
The FieldBioinformatics workflow for SARS-CoV-2 sequence analysis is also provided as an EPI2ME workflow – this provides a more accessible interface to a bioinformatics workflow and the provided cloud-based analysis also performs some secondary interpretation by preparing an additional report using the Nextclade software.
Expected results
Here, results are shown based on human coronavirus 229E spiked into 100 ng of human RNA derived from GM12878 cell line. 10 pg–0.001 pg of viral RNA obtained from ATCC was spiked into the human RNA and human-only and reverse transcription negative controls were carried through the prep to sequencing. Every sample underwent 30 and 35 cycles of PCR to determine sensitivity and specificity guidelines, as well as the expected amplicon drop-out rate for each sample.
Note: The viral RNA from ATCC is generated from cell lines infected with human coronavirus 229E. The RNA supplied is total RNA extracted from the cell lines and includes both human and viral RNA. Therefore, the levels of sensitivity are likely to be higher than those reported here.
Sample balancing
The graph below shows the expected sequence balancing if the protocol is followed. Here, equal masses went into the end-prep and native barcode ligation prior to pooling by equal mass for adapter ligation.
Figure 3. Number of reads per sample after native barcode demultiplexing in MinKNOW. All 14 samples were run on a single flow cell.
On-target rate
Sequences from each demultiplexed sample were aligned to the human coronavirus 229E genome using minimap2. The proportion of primary alignments per sample are reported below.
Figure 4. Proportion of reads for each sample aligning to the human coronavirus 229E reference genome.
Assessment of negative controls
After 12 hours of sequencing, the number of reads from the negative control samples aligning to the viral reference genome is shown in the graph below and is compared with the absolute number of sequences aligning to the lowest input (0.001 pg).
Figure 5. Absolute number of reads aligning to the human coronavirus 229E reference genome in the negative controls compared with the lowest input of viral RNA. Sequencing was carried out for 12 hours to pick up low levels of sequences assigned to barcodes representing these samples.
Target coverage for different PCR cycles and viral load
To assess the impact of PCR dropout with lowering input viral load and increasing PCR cycles, Mosdepth was used to calculate the proportion of the viral genome covered to different depth levels. These numbers were calculated after 12 hours of sequencing with 14 samples multiplexed.
Figure 6. Coverage and depth of the human coronavirus 229E genome for different input quantities of viral RNA and different cycle numbers after 12 hours of sequencing on a single flow cell.
How much sequencing is required?
This is unknown in real clinical samples. The graph below can be used to determine the proportion of the genome that could be covered to a given depth with different numbers of reads (30 cycles) at different input amounts in a background of 100 ng human RNA. Note: this is absolute depth.
Figure 7. Subsampled sequences to give an indication of the depth of sequencing achievable covering different amounts of the human coronavirus 229E genome. Input quantities and cycle number titrations show that high cycle numbers should be avoided where possible to minimise amplicon drop out.
This protocol provides amplification of low copy number viral genomes in a tiled method with low off-target amplification and minimal cross-contamination between samples. With <60 copies per reaction (0.001 pg viral input) in 100 ng background human RNA, under ideal circumstances, one should expect to cover >75% of the targeted genome at a depth of 200X within under 50,000 reads in the samples with the lowest viral titre and <20,000 reads in those with a higher viral titre.
12. 测序芯片的重复利用及回收
材料
- 测序芯片清洗剂盒(EXP-WSH004)
完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于+2至+8℃保存。
您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南。
提示
我们建议您在停止测序实验后尽快清洗测序芯片。如若无法实现,请将芯片留在测序设备上,于下一日清洗。
或者,请按照回收程序将测序芯片返还至Oxford Nanopore。
您可在此处找到回收测序芯片的说明。
重要
如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。
13. DNA/RNA提取和文库制备过程中可能出现的问题
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
低质量样本
现象 | 可能原因 | 措施及备注 |
---|---|---|
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) | 用户所使用的DNA提取方法未能达到所需纯度 | 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法。 请考虑将样品再次用磁珠纯化。 |
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。 |
RNA的片段长度短于预期 | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。 我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染. |
经AMPure磁珠纯化后的DNA回收率低
现象 | 可能原因 | 措施及备注 |
---|---|---|
低回收率 | AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 | 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。 2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。 |
低回收率 | DNA片段短于预期 | AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 |
末端修复后的DNA回收率低 | 清洗步骤所用乙醇的浓度低于70% | 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。 |
14. Issues during the sequencing run
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 纳米孔阵列中引入了气泡 | 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。 |
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 测序芯片没有正确插入测序仪 | 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。 |
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 文库中残留的污染物对纳米孔造成损害或堵塞 | 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。 如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法 。 |
MinKNOW脚本失败
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示 "Script failed”(脚本失败) | 重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。 |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
读长短于预期
现象 | 可能原因 | 措施及备注 |
---|---|---|
读长短于预期 | DNA样本降解 | 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。 1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。 2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。 在上图中,样本1为高分子量DNA,而样本2为降解样本。 3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。 |
大量纳米孔处于不可用状态
现象 | 可能原因 | Comments and actions |
---|---|---|
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示) 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。 | 样本中含有污染物 | 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加: 1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或 2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。 |
大量纳米孔处于失活状态
现象 | 可能原因 | 措施及备注 |
---|---|---|
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) | 测序芯片中引入了气泡 | 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。 |
大量纳米孔处于失活/不可用状态 | 文库中存在与DNA共纯化的化合物 | 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。 1. 请参考 植物叶片DNA提取方法。 2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。 3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。 |
大量纳米孔处于失活/不可用状态 | 样本中含有污染物 | 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。 |
运行过程中过孔速度和数据质量(Q值)降低
现象 | 可能原因 | 措施及备注 |
---|---|---|
运行过程中过孔速度和数据质量(Q值)降低 | 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 | 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。 |
温度波动
现象 | 可能原因 | 措施及备注 |
---|---|---|
温度波动 | 测序芯片和仪器接触不良 | 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。 |
未能达到目标温度
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示“未能达到目标温度” | 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) | MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION温度控制的更多信息,请参考此 FAQ (常见问题)文档。 |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |