Rapid sequencing V14 - Amplicon sequencing (SQK-RBK114.24 or SQK-RBK114.96)


Document options

MinION
Filters

Document options

MinION

概要

  • The fastest and simplest protocol to sequence amplicon DNA
  • For multiplexing up to 96 single species amplicon samples
  • Optimised for 500 bp – 5 kb amplicons.
  • Library preparation time ~60 minutes
  • High yield
  • Fragmentation
  • Compatible with R10.4.1 flow cells

For Research Use Only

Document version: RAA_9198_v114_revK_11Dec2024

1. Overview of the protocol

Introduction to amplicon sequencing using the Rapid Barcoding Kit 24 or 96 V14

This protocol describes how to carry out rapid barcoding of amplicon DNA using the Rapid Barcoding Kit 24 or 96 V14 (SQK-RBK114.24 or SQK-RBK114.96) to sequence up to 96 single amplicon samples. This method allows you to perform your own amplicon sequencing and validation with a quick turn-around time, without the need for primers and a reference, and with competitive price per sample. Using this method, PCR amplicons ranging from 500 bp to 5 kb can be sequenced, which allows users to check that each amplicon is the correct size and no mutations have been introduced during PCR amplification.

The analysis workflow is not intended for marker gene sequencing of mixtures/communities of different organisms (e.g. 16S sequencing). In de-novo consensus mode it expects a single amplicon per barcode. When running in variant calling mode, multiple amplicons per barcode can be processed, but their sequences need to be sufficiently different from each other so that most reads only align to one of the provided references.

We recommend new users to sequence for 12 hours, although a shorter run-time (e.g. 4 hours) may be sufficient to generate enough reads per target. We suggest generating 150X or ~1500 reads per target. In most cases, this should be sufficient data to perform analysis.

After sequencing, we recommend performing downstream analysis using the EPI2ME amplicon workflow (wf-amplicon).

The results of the workflow include an interactive HTML report, FASTQ files with the consensus sequences of the amplicons, and BAM files with alignments of the input reads re-aligned against the consensus. Optionally, a reference with the expected amplicon sequences can be supplied to the workflow, in which case VCF files with variants called against that reference are additionally emitted.

Detailed instructions for setting up MinKNOW and the EPI2ME workflow are included in this protocol.

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

  • Extract your DNA, and check its length, quantity and purity using the Input DNA/RNA QC protocol. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure your primer design is correct prior to amplicon generation.
    Note: To make sure that the whole region of interest is captured when using Rapid Barcoding Kits, the primers should be designed such that they include an extra of 15-20 bp at the start and end of the actual target sequence.
  • Generate your amplicon sample(s) by PCR amplification.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents.
  • Download the software for acquiring and analysing your data.
  • Check your flow cell to ensure it has enough pores for a good sequencing run.

Library preparation

The table below is an overview of the steps required in the library preparation, including timings and stopping points.

Library preparation step Process Time Stop option
PCR clean-up AMPure XP Bead purification (or equivalent) of amplicon samples to remove PCR artifacts 25 minutes 4°C overnight
Amplicon DNA barcoding Tagmentation of the amplicon DNA using the Rapid Barcoding Kit V14 15 minutes 4°C overnight
Sample pooling and clean-up Pooling of barcoded libraries and AMPure XP Bead clean-up 25 minutes 4°C overnight
Adapter ligation Attach the sequencing adapters to the DNA ends 5 minutes We strongly recommend sequencing your library as soon as it is adapted
Priming and loading the flow cell Prime the flow cell and load the prepared library for sequencing 5 minutes

Amplicon V14 workflow SVG April2024

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device into basecalled reads and will perform barcode demultiplexing.
  • Start the EPI2ME software and use the EPI2ME amplicon workflow (wf-amplicon) for analysis.
重要

Compatibility of this protocol

This protocol should only be used in combination with:

2. Equipment and consumables

材料
  • 50 ng amplicon DNA per sample (500 bp – 5 kb amplicon size)
  • Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) OR Rapid Barcoding Kit 96 V14 (SQK-RBK114.96)

消耗品
  • MinionとGridIONのFlow Cell
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881) (or equivalent for DNA purification)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
  • nuclease-free waterで調整した 80% エタノール溶液
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • 2 ml Eppendorf DNA LoBind tubes

装置
  • MinIONかGridION のデバイス
  • MinIONとGridIONのFlow Cell ライトシールド
  • Hula mixer(緩やかに回転するミキサー)
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • Microfuge
  • ボルテックスミキサー
  • Thermal cycler or heat blocks
  • Qubit蛍光光度計(またはQCチェックのための同等品)
  • マグネットラック
  • P1000 ピペット及びチップ
  • P200 ピペットとチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P2 ピペットとチップ
  • Multichannel pipette and tips
  • アイスバケツ(氷入り)
  • タイマー
重要

Ensure you have correctly designed your primer sequence prior to amplicon generation and library preparation.

Due to the nature of how Rapid Barcoding Kits reads are sequenced and limitations of correctly assembling terminal ends of linear sequences, small truncations (~10-20 bp) at both ends of the generated consensus can occur.

This means that part of the primer sequence (or potentially the whole primer and a few more bases depending on primer length) might be missing from the consensus sequence produced by the analysis workflow.

To make sure that the whole region of interest is captured when using Rapid Barcoding Kits, the primers should be designed such that they include an extra of 15-20 bp at the start and end of the actual target sequence.

For this protocol, you will need 50 ng of single species amplicon DNA per sample.

We recommend performing a purification step following the PCR reaction used to generate your amplicons. Please use standard methods appropriate for the amplicon size, such as AMPure XP beads. This step ensures the removal of proteins, salts, dNTPs, and primers, which could potentially impact the library preparation and subsequent analysis workflow.

Please note that while alternative methods exist, they have not been validated by our internal teams.

This method is intended for barcoding single species amplicon samples and is not suitable for mixed species amplicons.

重要

The wf-amplicon workflow is optimised for 500 bp – 5 kb amplicons.

Sequencing amplicons <500 bp or >5 kb may result in sub-optimal performance.

Further work is ongoing to broaden the range of amplicons compatible with this end-to-end workflow.

フローセルのチェックをしてください

シークエンシング実験を開始する前に、フローセルのポアの数を確認することを強くお勧めします。このフローセルの確認は、MinION/GridION/PromethIONの場合は代理店への到着から12週間以内に行ってください。またはFlongle Flow Cellの場合は代理店への到着から4週間以内に行う必要があります。Oxford Nanopore Technologiesは、フローセルチェックの実施から2日以内に結果が報告され、推奨される保管方法に従っていた場合に、以下の表に記載されているナノポアの有効数に満たさない場合には、フローセルを交換します。 フローセルのチェックを行うには、Flow Cell Check documentの指示に従ってください。

Flow cell 保証する最小有効ポア数(以下の数未満のフローセルが交換対象となります)
Flongle Flow Cell 50
MinION/GridION Flow Cell 800
PromethION Flow Cell 5000

Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) contents

We are in the process of reformatting the barcodes provided in this kit into a plate format. This will reduce plastic waste and facilitates automated applications.

Plate format

SQK-RBK114.24 plate format

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Rapid Adapter RA Green 1 15
Adapter Buffer ADB Clear 1 100
AMPure XP Beads AXP Amber 2 1200
Elution Buffer EB Black 1 500
Sequencing Buffer SB Red 1 700
Library Beads LIB Pink 1 600
Library Solution LIS White cap, pink label 1 600
Flow Cell Flush FCF Clear cap, light blue label 1 8000
Flow Cell Tether FCT Purple 1 200
Rapid Barcode plate RB01-24 - 2 plates, 3 sets of barcodes per plate 5 µl per well

This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.


Vial format

RBK114.24 tubes

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Rapid Adapter RA Green 1 15
Adapter Buffer ADB Clear 1 100
AMPure XP Beads AXP Amber 2 1,200
Elution Buffer EB Black 1 500
Sequencing Buffer SB Red 1 700
Library Beads LIB Pink 1 600
Library Solution LIS White cap, pink label 1 600
Flow Cell Flush FCF Blue 6 1,170
Flow Cell Tether FCT Purple 1 200
Rapid Barcodes RB01-24 Clear 24 15

This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.

Rapid Barcoding Kit 96 V14 (SQK-RBK114.96) contents

RBK114.96 tubes (1)

Note: This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.

3. Library preparation

材料
  • 50 ng amplicon DNA per sample (500 bp – 5 kb amplicon size)
  • Rapid Barcodes (RB01-24 or RB01-96)
  • Rapid Adapter (RA)
  • Adapter Buffer (ADB)
  • AMPure XP Beads (AXP)
  • Elution Buffer (EB)

消耗品
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881) (or equivalent for DNA purification)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • nuclease-free waterで調整した 80% エタノール溶液
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • 2 ml Eppendorf DNA LoBind tubes

装置
  • サーマルサイクラー
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • Microfuge
  • ボルテックスミキサー
  • Hula mixer(緩やかに回転するミキサー)
  • マグネットラック
  • P1000 pipette and tips
  • P200 ピペットとチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
  • P2 ピペットとチップ
  • Multichannel pipette and tips
  • アイスバケツ(氷入り)
  • Timer
CHECKPOINT

フローセルのチェックを行ってください。

ライブラリー調製を開始する前にフローセルチェックを行い、良好なシークエンスランに十分なポアを持つフローセルを使用することをお勧めします。

詳細については、MinKNOWプロトコルのflow cell check instructions を参照してください。

重要

PCR clean-up of amplicon DNA samples

We recommend performing a purification step following the PCR reaction used to generate your amplicons. Please use standard methods appropriate for the amplicon size, such as AMPure XP beads. This step ensures the removal of proteins, salts, dNTPs, and primers, which could potentially impact the library preparation and subsequent analysis workflow.

Please note that while alternative methods exist, they have not been validated by our internal teams.

Program the thermal cycler: 30°C for 2 minutes, then 80°C for 2 minutes.

Thaw kit components at room temperature, spin down briefly using a microfuge and mix by pipetting as indicated by the table below:

Reagent 1. Thaw at room temperature 2. Briefly spin down 3. Mix well by pipetting
Rapid Barcodes (RB01-24 or RB01-96)) Not frozen
Rapid Adapter (RA) Not frozen
AMPure XP Beads (AXP) Mix by pipetting or vortexing immediately before use
Elution Buffer (EB)
Adapter Buffer (ADB) Mix by vortexing

Prepare the DNA in nuclease-free water, as follows. Approximately 50 ng of amplicon DNA is required in 9 µl of volume for each sample for barcoding.

  • Dilute your amplicon DNA samples with nuclease-free water to approximately 50 ng. See the table below for dilutions:
Starting Conc. Volume of DNA Volume of nuclease-free water Total volume
100 ng/µl 2 µl 34 µl 36 µl
90 ng/µl 2 µl 31 µl 33 µl
80 ng/µl 2 µl 27 µl 29 µl
70 ng/µl 3 µl 35 µl 38 µl
60 ng/µl 2 µl 20 µl 22 µl
50 ng/µl 2 µl 16 µl 18 µl
40 ng/µl 5 µl 31 µl 36 µl
30 ng/µl 5 µl 22 µl 27 µl
20 ng/µl 5 µl 13 µl 18 µl
10 ng/µl 10 µl 8 µl 18 µl
<5.56 ng/µl 9 µl 0 µl 9 µl
  • Pipette mix the dilutions, and spin down briefly.
  • Add 9 µl of volume for each sample into a 0.2 ml PCR tube or plate.

Select a unique barcode for every sample to be run together on the same flow cell. Up to 96 samples can be barcoded and combined in one experiment.

Please note: Only use one barcode per sample.

In 0.2 ml thin-walled PCR tubes or plate, mix the following reagents. The Rapid Barcodes can be transferred using a multichannel pipette:

Reagent Volume
50 ng template DNA 9 μl
Rapid Barcodes (RB01-96, one for each sample) 1 μl
Total 10 μl

Ensure the components are thoroughly mixed by pipetting and spin down briefly.

Incubate the tubes or plate at 30°C for 2 minutes and then at 80°C for 2 minutes. Briefly put the tubes or plate on ice to cool.

Spin down the tubes or plate to collect the liquid at the bottom.

Pool all the barcoded samples into a clean 1.5 ml Eppendorf DNA LoBind tube, noting the total volume.

. Volume per sample For 12 samples For 24 samples For 48 samples For 96 samples
Total volume 10 μl 120 μl 240 μl 480 μl 960 μl

Resuspend the AMPure XP beads (AXP) by vortexing.

To the entire pooled barcoded sample, add an equal volume of resuspended AMPure XP Beads (AXP) and mix by flicking the tube.

. Volume per sample For 12 samples For 24 samples For 48 samples For 96 samples
Volume of AXP 10 μl 120 μl 240 μl 480 μl 960 μl

Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.

Prepare at least 3 ml of fresh 80% ethanol in nuclease-free water.

Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.

Keep the tube on the magnet and wash the beads with 1.5 ml of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

前のステップを繰り返します。

Briefly spin down and place the tube back on the magnet. Pipette off any residual ethanol. Allow to dry for 30 seconds, but do not dry the pellet to the point of cracking.

Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB). Incubate for 10 minutes at room temperature.

溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。

Remove and retain 15 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Remove and retain the eluate which contains the DNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
  • Dispose of the pelleted beads
CHECKPOINT

Qubit蛍光光度計を使用して、溶出したサンプル1 µlを定量します。

Transfer 11 µl of the sample into a clean 1.5 ml Eppendorf DNA LoBind tube.

Note: We recommend transfering a maximum of 800 ng of the DNA library. If necessary, take forward only the necessary volume for 800 ng of DNA library and make up the rest of the volume to 11 µl using Elution Buffer (EB).

In a fresh 1.5 ml Eppendorf DNA LoBind tube, dilute the Rapid Adapter (RA) as follows and pipette mix:

Reagent Volume
Rapid Adapter (RA) 1.5 μl
Adapter Buffer (ADB) 3.5 μl
Total 5 μl

Add 1 µl of the diluted Rapid Adapter (RA) to the barcoded DNA.

Mix gently by flicking the tube, and spin down.

Incubate the reaction for 5 minutes at room temperature.

最終ステップ

The prepared library is used for loading into the flow cell. Store the library on ice until ready to load.

4. Priming and loading the MinION and GridION Flow Cell

材料
  • Flow Cell Flush (FCF)
  • Flow Cell Tether (FCT)
  • Library Solution (LIS)
  • Library Beads (LIB)
  • Sequencing Buffer (SB)

消耗品
  • MinionとGridIONのFlow Cell
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
  • Nuclease-free water
  • 1.5 ml Eppendorf DNA LoBind tubes

装置
  • MinIONかGridION のデバイス
  • MinIONとGridIONのFlow Cell ライトシールド
  • P1000 ピペット及びチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
重要

注意:本キットはR10.4.1フローセル(FLO-MIN114)のみに対応しています。

ヒント

Priming and loading a flow cell

We recommend all new users watch the 'Priming and loading your flow cell' video before your first run.

Sequencing Buffer(SB)、Library Beads(LIB)またはLibrary Solution(LISを使用する場合のみ)、Flow Cell Tether(FCT)およびFlow Cell Flush(FCF)を室温で融解してから、ボルテックスで混合します。その後、スピンダウンして氷上で保存します。

重要

MinION R10.4.1フローセル(FLO-MIN114)での最適なシークエンス性能と出力向上のために、フローセルのプライミングミックスに最終濃度0.2 mg/mlでBovine Serum Albumin (BSA) を添加することを推奨します。

(注: その他のアルブミンの種類(組換えヒト血清アルブミンなど)の使用は推奨しません。

BSA入りのフローセルプライミングミックスを調製するには、Flow Cell Flush (FCF)とFlow Cell Tether(FCT)を以下の指示に従って組み合わせます。室温でピペッティングして混合します。

(注: キットの容器を変更している最中です。今までは実験の後に使い捨てるシングルユーズチューブを使用していましたが、バッファー単位のボトル容器に変更しています。お手持ちのキットの使用方法に従ってください。

シングルユースチューブの場合: 50 mg/mlのウシ血清アルブミン(BSA)5 µlとFlow Cell Tether (FCT)30 µlをFlow Cell Flush (FCF)チューブに直接加えます。

ボトル容器の場合:: フローセルの数に適したチューブに以下の試薬を組み合わせます。

試薬 1フローセルあたりの容量
Flow Cell Flush (FCF) 1,170 µl
Bovine Serum Albumin (BSA) at 50 mg/ml 5 µl
Flow Cell Tether (FCT) 30 µl
合計 1,205 µl

MinIONまたはGridIONデバイスの蓋を開け、フローセルをクリップの下にスライドさせます。 フローセルをしっかりと押さえ、サーマルプレートと電気接触が密着しているかを確認してください。

Flow Cell Loading Diagrams Step 1a_JP

Flow Cell Loading Diagrams Step 1b_JP

オプショナルステップ

ライブラリーをロードする前にフローセルチェックを行い、使用可能なポアの数を把握して下さい。

フローセルが以前にチェックされている場合は、このステップを省略できます。

詳細については、MinKNOWプロトコルのフローセルチェックの手順 flow cell check instructionsを参照してください。

フローセルのプライミングポートカバーを時計方向にスライドさせ、プライミングポートを開きます。

Flow Cell Loading Diagrams Step 2_JP

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。

  1. P1000ピペットを200 µ Lに設定して下さい。
  2. ピペットの先端をプライミングポートに差し込みます。
  3. 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。

(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。

Flow Cell Loading Diagrams Step 03 V5_JP

気泡が混入しないように、プライミングポートからフローセルにプライミングミックスを800µl注入し、 5分間待ちます。この5分間の間に、以下の手順でライブラリーをロードする準備をして下さい。

Flow Cell Loading Diagrams Step 04 V5_JP

Library Beads(LIB)の液をピペッティングすることで十分に混合して下さい。

重要

Library Beads(LIB)チューブにはビーズの懸濁液が入っています。このビーズはすぐに沈殿するので、使用直前に混合することが重要です。

ほとんどのシークエンシング実験には、Library Beads (LIB)を使用することをお勧めします。しかし、より粘性の高いライブラリーをご使用の場合はLibrary Solution (LIS)の使用をお勧めします。

新しい1.5mlのEppendorf DNA LoBindチューブにてライブラリーをロードする準備をします。(詳細は以下に記載されています。)

試薬 1フローセルあたりの容量
Sequencing Buffer (SB) 37.5 µl
Library Beads (LIB)またはLibrary Solution(LIS)(使用する場合)は、使用直前に混合して下さい。 25.5 µl
DNA library 12 µl
合計 75 µl

フローセルのプライミングを完了させます。

  1. SpotON サンプルポートカバーをゆっくりと持ち上げ、SpotON サンプルポートにアクセスできるようにします。
  2. 200μlのプライミングミックスをフローセルのプライミングポート(SpotONサンプルポートではありません)に気泡が入らないように注入します。

Flow Cell Loading Diagrams Step 5_JP

Flow Cell Loading Diagrams Step 06 V5_JP

調製したライブラリーは、ロードする直前にピペッティング混合して下さい。

調製したライブラリー75μlをSpotONサンプルポートからフローセルに滴下します。次の一滴を追加する前に各一滴がポートに入っていることを確認して下さい。

Flow Cell Loading Diagrams Step 07 V5_JP

SpotONサンプルポートカバーをゆっくりと元に戻し、バング(カバーの先)がSpotONポートに入ることを確認し、プライミングポートを閉じます。

Step 8 update_JP

Flow Cell Loading Diagrams Step 9_JP

重要

最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。

ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。

ライトシールドを以下のようにフローセルに設置して下さい。

  1. ライトシールドの先端を慎重にクリップに当てます。 (注: ライトシールドをクリップの下に無理に押し込まないでください。

  2. ライトシールドをフローセルにゆっくりと下ろします。ライトシールドは、フローセルの上部全体を覆うようにSpotONカバーの周囲に取り付けます。

J2264 - Light shield animation Flow Cell FAW optimised-Japanese step10

注意

MinIONフローセルライトシールドは、フローセルに固定されていないため、取り付け後の取り扱いには注意が必要です。

最終ステップ

デバイスの蓋を閉め、MinKNOWでシークエンスランをセットします。

5. Data acquisition and basecalling

How to start sequencing

Once you have loaded your flow cell, the sequencing run can be started on MinKNOW, our sequencing software that controls the device, data acquisition and real-time basecalling. For more detailed information on setting up and using MinKNOW, please see the MinKNOW protocol.

MinKNOW can be used and set up to sequence in multiple ways:

  • On a computer either direcly or remotely connected to a sequencing device.
  • Directly on a GridION or MinION Mk1C sequencing device.

For more information on using MinKNOW on a sequencing device, please see the device user manuals:


To start a sequencing run on MinKNOW:

1. Navigate to the start page and click Start sequencing. start

2. Fill in your experiment details, such as name and flow cell position and sample ID. Grid start seq

3. Select the Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) or Rapid Barcoding Kit 96 V14 (SQK-RBK114.96). Edit 3

4. Change the run limit to 12 hours by clicking "Options" and changing the run limit value to 12. The other run settings can be left at the defaults.
Amplicon run setup 1

plasmid seq rbk114 v1

Note: We recommend a run-time of 12 hours for new users to ensure sufficient data is generated for downstream analysis. However, shorter run-times may be sufficient depending on your sample input and analysis requirements.
If using custom sequencing time, for optimal results, we recommend allowing the sequencing run to generate 1000-1500 reads per sample before proceeding to the analysis workflow.

5. Set up basecalling and barcoding using the following parameters:

  • Toggle basecalling to ON.
  • Next to "Models", click Edit options and choose High accuracy basecaller (HAC) from the drop-down menu.
  • Toggle barcoding to ON.
  • Keep all other options at their default settings.
  • Click Continue to output and continue.

Amplicon run setup 3

6. Set up the output format and filtering as follows:

  • Select either .POD5 or .FAST5 (legacy) as the output format.
  • Ensure .FASTQ is selected for basecalled reads.
  • Ensure filtering is ON and read splitting is enabled. Other parameters can be kept to their default settings.
  • Click Continue to final review to continue.

Amplicon run setup 4

7. Click Start on the Review page to start the sequencing run. Amplicon run setup 5

シークエンシング後のデータ解析

MinKNOWでシークエンスが終わると、フローセルを再利用または返却ができます。詳しくは、フローセルの再利用と返却のセクションをご覧ください。

シークエンシングとベースコールの後にはデータを解析することができます。 ベースコールおよびベースコール後の解析オプションの詳細については、Data Analysis を参照してください。

ダウンストリーム解析セクションでは、データを解析するためのオプションの概要を説明しています。

6. Flow cell reuse and returns

材料
  • Flow Cell Wash Kit (EXP-WSH004)

シークエンス実験終了後、フローセルを再利用する場合は、Flow Cell Wash Kitのプロトコールに従い、洗浄したフローセルを2~8℃で保管してください。

Flow Cell Wash Kit protocolは、Nanoporeコミュニティーで入手できます。

または、返送手順に従って、オックスフォード・ナノポアに返送してください。

フローセルの返却方法は hereをご覧ください。

(注: 製品を返却する前に、すべてのフローセルを脱イオン水で洗浄する必要があります。

重要

シークエンシング実験に関して問題が発生した場合や質問がある場合には、このプロトコルのオンライン版にあるトラブルシューティングガイドを参照してください。

7. Downstream analysis using EPI2ME

Post-basecalling analysis

We recommend performing downstream analysis using EPI2ME which facilitates bioinformatic analyses by allowing users to run Nextflow workflows in a desktop application. EPI2ME maintains a collection of bioinformatic workflows which are curated and actively maintained by experts in long-read sequence analysis.

Further information about the available EPI2ME workflows can be found here, along with the Quick Start Guide to start your first bioinformatic workflow.

For the analysis of amplicon sequences, we recommend using the wf-amplicon workflow which requires Nextflow and Docker or Singularity to be installed before running the workflow.

For installation instructions please click here.

重要

The wf-amplicon workflow is optimised for 500 bp – 5 kb amplicons.

Sequencing amplicons <500 bp or >5 kb may result in sub-optimal performance.

We recommend generating 150X or 1500 reads per target, which should be enough to perform the analysis in most cases.

Further work is ongoing to broaden the range of amplicons compatible with this end-to-end workflow.

Open the EPI2ME app using the desktop shortcut.

Navigate to the workflow downloads page. Click on the wf-amplicon workflow to download and confirm to install.

wf-amplicon-install-confirm_2

Navigate to the Workflows tab and click on wf-amplicon.

Select-wf-amplicon_3

Click on "Run this workflow" to open the launch wizard.

wf-amplicon-run_4

Set up your run by selecting your sequencing data in the "Input Options".

wf-amplicon-select-input-data_5

To speed up the analysis, you can set "Downsampling size" to 500.

Unless your amplicons are very long (>5 kb), this should provide sufficient coverage.

Amplicon wf downsampling new dec2023

オプショナルステップ

The amplicon workflow can be run with a sequence reference file if required.

Set up the reference FASTA by uploading the file in the following location:

wf-amplcion-reference_5.5

For the remaining parameter options we recommend keeping the default settings.

Click "Launch workflow".

Ensure all parameter options have green ticks.

wf-amplicon-launch_6

Once the workflow finishes, a report will be produced.

Amplicon workflow report

The primary outputs of the workflow include:

· an interactive HTML report with tables and plots detailing the results. · FASTQ files (one per barcode) with the de-novo consensus sequence and per-base consensus qualities (as calculated by Medaka). · BAM files (one per barcode) of input reads re-aligned against the consensus.

Example reports:

· When a reference file has been uploaded, reads are aligned to the reference (containing the expected sequence for each amplicon) for variant calling. An example of a sample variant calling report can be viewed here. · When no reference file has been uploaded, the amplicon’s consensus sequence is generated de novo. An example of sample de novo consensus report can be viewed here.


Report contents

The report consists of several sections. The introduction section gives a brief overview of key results for the individual samples analysed, while the preprocessing section illustrates the number of reads removed during downsampling / filtering. It also contains read length and quality histograms as well as a plot showing base yield vs. read length.

The remaining sections of the report depend on the mode in which the workflow was run. In variant calling mode, they summarise the mapping and variant calling stages of the workflow, showing the depth of coverage of aligned reads and providing further details on the variants called. In de novo consensus mode, results of the draft consensus QC stage and re-alignment of input reads against the consensus are described. Additionally, a depth of coverage plot of the re-aligned reads along the consensus is shown.

8. Issues during DNA/RNA extraction and library preparation

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

サンプルの品質が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) DNA抽出で必要な純度が得られていない 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。.

追加のSPRIクリーンアップステップの実施を検討して下さい。
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。
RNAのフラグメントが予想より短い 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。

RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。

AMPureビーズクリーンアップ後のDNA回収率が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
低回収率 AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。

2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。
低回収率 DNA断片が予想よりも短い サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 SPRI cleanup
エンドプレップ後の収率が低い 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。

The VolTRAX run terminated in the middle of the library prep

Observation Possible cause Comments and actions
The green light was switched off

or

An adapter was used to connect the VolTRAX USB-C cable to the computer
Insufficient power supply to the VolTRAX The green LED signals that 3 A are being supplied to the device. This is the requirement for the full capabilities of the VolTRAX V2 device. Please use computers that meet the requirements listed on the VolTRAX V2 protocol.

The VolTRAX software shows an inaccurate amount of reagents loaded

Observation Possible cause Comments and actions
The VolTRAX software shows an inaccurate amount of reagents loaded Pipette tips do not fit the VolTRAX cartridge ports Rainin 20 μl or 30 μl and Gilson 10 μl, 20 μl or 30 μl pipette tips are compatible with loading reagents into the VolTRAX cartridge. Rainin 20 μl is the most suitable.
The VolTRAX software shows an inaccurate amount of reagents loaded The angle at which reagents are pipetted into the cartridge is incorrect The pipetting angle should be slightly greater than the cartridge inlet angle. Please watch the demo video included in the VolTRAX software before loading.

9. Issues during the sequencing run

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

シークエンス開始時のポアがフローセルチェック後よりも少ない場合

問題点 予想される原因 解決策とコメント
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ナノポアアレイに気泡が入ってしまった。 フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 フローセルがデバイスに正しく挿入されていない。 シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。

MinKNOWのスクリプトに問題

問題点 この問題が生じた可能性のある原因 解決策とコメント
MinKNOW に 「Script failed」と表示されている"
コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

予想より短いリード長

問題点 予想される原因 解決策とコメント
予想より短いリード長 DNAサンプルの不要な断片化 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。

1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。

2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 DNA gel2 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。

3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。

利用できないポアの割合が多い場合

問題点 予想される原因 解決策とコメント
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています)

image2022-3-25 10-43-25 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。
サンプル内に不純物が含まれている 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合:

1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は
2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。

Inactiveのポアの割合が高い

問題点 予想される原因 解決策とコメント
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 気泡がフローセルに混入した。 フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。
利用できないポアの割合が多い場合 サンプルDNAに含まれる不純物 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。

1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。
2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。
3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。
利用できないポアの割合が多い場合 サンプル内に不純物が含まれている 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。

Reduction in sequencing speed and q-score later into the run

Observation Possible cause Comments and actions
Reduction in sequencing speed and q-score later into the run For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell.

温度変動

問題点 予想される原因 解決策とコメント
温度変動 フローセルとデバイスの接続が途切れている。 フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。

目標温度に到達しない場合

問題点 予想される原因 解決策とコメント
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。

Last updated: 12/11/2024