PCR tiling of SARS-CoV-2 virus - classic protocol (SQK-LSK109 with EXP-NBD196)


Descripción general

For Research Use Only

This is a Legacy product This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months.

Document version: PTCN_9103_v109_revR_13Jul2020

1. Overview of the protocol

IMPORTANTE

This is a Legacy product

This kit is available on the Legacy page of the store. We are in the process of gathering data to support the upgrade of this protocol to our latest chemistry. Further information regarding protocol upgrades will be provided on the Community as soon as they are available over the next few months. For further information on please see the product update page.

IMPORTANTE

This protocol is a work in progress, and some details are expected to change over time. Please make sure you always use the most recent version of the protocol.

Introduction to the protocol

To enable support for the rapidly expanding user requests, the team at Oxford Nanopore Technologies have put together an end-to-end workflow based on the ARTIC Network protocols and analysis methods.

While this protocol is available in the Nanopore Community, we kindly ask users to ensure they are citing the members of the ARTIC network who have been behind the development of these methods.

This protocol is based on the ARTIC amplicon sequencing protocol for MinION for nCOV 2019 by Josh Quick. The protocol generates 400 bp amplicons in a tiled fashion across the whole SARS-CoV-2 genome. Some example data is shown in the Downstream analysis and expected results section, this is generated using human coronavirus 229E to show what would be expected when running this protocol with SARS-CoV-2 samples.

Primers were designed by Josh Quick using Primal Scheme; the primer sequences can be found here.

Steps in the sequencing workflow:

Prepare for your experiment you will need to:

  • Extract your RNA
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Prepare your library You will need to:

  • Reverse transcribe your RNA samples with random hexamers
  • Amplify the samples by tiled PCR using separate primer pools
  • Combine the primer pools, purify and quantify the PCR products
  • Prepare the DNA ends for adapter attachment
  • Ligate native barcodes supplied in the kit to the DNA ends and pool the samples
  • Ligate the sequencing adapters supplied in the kit to the DNA ends
  • Prime the flow cell and load your DNA library into the flow cell

2020 11 12 ARTIC NBD workflow v1 DS (1)

Sequencing and analysis You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
  • Start the EPI2ME software and select the barcoding workflow

Before starting

This protocol outlines how to carryout PCR tiling of SARS-CoV-2 viral RNA samples on a 96-well plate using the Native Barcoding Expansion 96 (EXP-NBD196).

It is required to use total RNA extracted from samples that have been screened by a suitable qPCR assay. Here, we demonstrate the level of sensitivity and specificity by titrating total RNA extracted from cell culture infected with Human coronavirus 229E spiked into 100 ng human RNA extracted from GM12878 to give approximate figures.

Although not tested here, work performed by Josh Quick et al. on the Zika virus gives approximate dilution factors that may help the reduction of inhibiting compounds that can be co-extracted from samples.

Note: this is a guideline and not currently tested for COVID-19.

qPCR ct Dilution factor
18–35 none
15–18 1:10
12–15 1:100

When processing multiple samples at once, we recommend making master mixes with an additional 10% of the volume. We also recommend using pre- and post-PCR hoods when handling master mixes and samples. It is important to clean and/or UV irradiate these hoods between sample batches. Furthermore, to track and monitor cross-contamination events, it is important to run a negative control reaction at the reverse transcription stage using nuclease-free water instead of sample, and carrying this control through the rest of the prep.

To minimise the chance of pipetting errors when preparing primer mixes, we recommend ordering the tiling primers from IDT in a lab-ready format at 100 µM.

IMPORTANTE

Please note that the barcodes in the Native Barcoding Expansion 96 have different orientations on the plate based on the kit batch number:

Kits in batches NBD196.10.0007 onwards have barcodes ordered in columns on the plate:

2021-09-14 Native Barcoding 96 kit contents v2 columns

Kits in batches prior to NBD196.10.0007 have barcodes ordered in rows:

2020-05-20 Native Barcoding 96 kit contents v1

IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

  • Native Barcoding Expansion 96 (EXP-NBD196)
  • Ligation Sequencing Kit (SQK-SQK109)
  • R9.4.1 (FLO-MIN106) flow cells
  • Flow Cell Wash Kit (EXP-WSH004)
  • SFB Expantion (EXP-SFB001)
  • Sequencing Auxiliary Vials (EXP-AUX001)

2. Equipment and consumables

Material
  • Input RNA in 10 mM Tris-HCl, pH 8.0
  • Ligation Sequencing Kit (SQK-LSK109)
  • Flow Cell Priming Kit (EXP-FLP002)
  • Native Barcoding Expansion 96 (EXP-NBD196)
  • SFB Expansion (EXP-SFB001)
  • Adapter Mix II Expansion (EXP-AMII001)

Consumibles
  • LunaScript™ RT SuperMix Kit (NEB, cat # E3010)
  • Q5® Hot Start High-Fidelity 2X Master Mix (NEB, cat # M0494)
  • SARS-CoV-2 primers (lab-ready at 100 µM, IDT)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)
  • Etanol al 80 % recién preparado con agua sin nucleasas
  • Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
  • NEB Blunt/TA Ligase Master Mix (NEB, M0367)
  • NEBNext Ultra II End repair/dA-tailing Module (NEB E7546)
  • NEBNext Quick Ligation Module (NEB E6056) (Módulo de ligación rápida)
  • DNA 12000 Kit & Reagents - optional (Agilent Technologies)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
  • 96-well deepwell plates
  • 5 ml centrifuge tubes

Instrumental
  • Mezclador Hula (mezclador giratorio suave)
  • Magnetic rack suitable for 96-well PCR plates, e.g. DynaMag™-96 Side Skirted Magnet (Thermo Fisher, cat # 12027)
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • Mezclador vórtex
  • Termociclador
  • Stepper pipette and tips
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Cubeta con hielo
  • Temporizador
Equipo opcional
  • Bioanalizador Agilent (o equivalente)
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Centrifuga Eppendorf 5424 (o equivalente)
  • PCR hood with UV steriliser (optional but recommended to reduce cross-contamination)
  • PCR-Cooler (Eppendorf)

Input RNA guidelines

Where sample RNA is added to the below reaction, it is likely advantageous to follow the dilution guidelines proposed by Josh Quick:

qPCR Ct Dilution factor
18–35 none
15–18 1:10
12–15 1:100

If the sample has a low copy number (ct 18–35), use up to 16 µl of sample. Use nuclease-free water to make up any remaining volume. Take note to be aware that co-extracted compounds may inhibit reverse transcription and PCR.

Ligation Sequencing Kit contents (SQK-LSK109)

SQK-LSK109 v1

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
DNA CS DCS Yellow 1 50
Adapter Mix AMX Green 1 40
Ligation Buffer LNB Clear 1 200
L Fragment Buffer LFB White cap, orange stripe on label 2 1,800
S Fragment Buffer SFB Grey 2 1,800
Sequencing Buffer SQB Red 2 300
Elution Buffer EB Black 1 200
Loading Beads LB Pink 1 360

Flow Cell Priming Kit contents (EXP-FLP002)

FLP

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Flush Buffer FB Blue 6 1,170
Flush Tether FLT Purple 1 200

Native Barcoding Expansion 96 (EXP-NBD196) contents

Kits in batches NBD196.10.0007 onwards have barcodes ordered in columns on the plate:

2021-09-14 Native Barcoding 96 kit contents v2 columns

Kits in batches prior to NBD196.10.0007 have barcodes ordered in rows:

2020-05-20 Native Barcoding 96 kit contents v1

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Native Barcode 01-96 NB01-96 - 1 plate 40 μl per well
Adapter Mix II AMII Green 1 70

SFB Expansion contents (EXP-SFB001)

2020 03 25 SFB expansion v1 DS

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Short Fragment Buffer SFB Grey 4 1,800

Adapter Mix II Expansion contents (EXP-AMII001)

EXP-AMII001 kit contents

Name Acronym Cap colour No. of tubes Fill volume per vial (μl)
Adapter Mix II AMII Green 2 40

Adapter Mix II Expansion use

Protocols that use the Native Barcoding Expansions require 5 μl of AMII per reaction. Native Barcoding Expansions EXP-NBD104/NBD114 and EXP-NBD196 contain sufficient AMII for 6 and 12 reactions, respectively (or 12 and 24 reactions when sequencing on Flongle). This assumes that all barcodes are used in one sequencing run.

The Adapter Mix II expansion provides additional AMII for customers who are running subsets of barcodes, and allows a further 12 reactions (24 on Flongle).

Native barcode sequences

Component Forward sequence Reverse sequence
NB01 CACAAAGACACCGACAACTTTCTT AAGAAAGTTGTCGGTGTCTTTGTG
NB02 ACAGACGACTACAAACGGAATCGA TCGATTCCGTTTGTAGTCGTCTGT
NB03 CCTGGTAACTGGGACACAAGACTC GAGTCTTGTGTCCCAGTTACCAGG
NB04 TAGGGAAACACGATAGAATCCGAA TTCGGATTCTATCGTGTTTCCCTA
NB05 AAGGTTACACAAACCCTGGACAAG CTTGTCCAGGGTTTGTGTAACCTT
NB06 GACTACTTTCTGCCTTTGCGAGAA TTCTCGCAAAGGCAGAAAGTAGTC
NB07 AAGGATTCATTCCCACGGTAACAC GTGTTACCGTGGGAATGAATCCTT
NB08 ACGTAACTTGGTTTGTTCCCTGAA TTCAGGGAACAAACCAAGTTACGT
NB09 AACCAAGACTCGCTGTGCCTAGTT AACTAGGCACAGCGAGTCTTGGTT
NB10 GAGAGGACAAAGGTTTCAACGCTT AAGCGTTGAAACCTTTGTCCTCTC
NB11 TCCATTCCCTCCGATAGATGAAAC GTTTCATCTATCGGAGGGAATGGA
NB12 TCCGATTCTGCTTCTTTCTACCTG CAGGTAGAAAGAAGCAGAATCGGA
NB13 AGAACGACTTCCATACTCGTGTGA TCACACGAGTATGGAAGTCGTTCT
NB14 AACGAGTCTCTTGGGACCCATAGA TCTATGGGTCCCAAGAGACTCGTT
NB15 AGGTCTACCTCGCTAACACCACTG CAGTGGTGTTAGCGAGGTAGACCT
NB16 CGTCAACTGACAGTGGTTCGTACT AGTACGAACCACTGTCAGTTGACG
NB17 ACCCTCCAGGAAAGTACCTCTGAT ATCAGAGGTACTTTCCTGGAGGGT
NB18 CCAAACCCAACAACCTAGATAGGC GCCTATCTAGGTTGTTGGGTTTGG
NB19 GTTCCTCGTGCAGTGTCAAGAGAT ATCTCTTGACACTGCACGAGGAAC
NB20 TTGCGTCCTGTTACGAGAACTCAT ATGAGTTCTCGTAACAGGACGCAA
NB21 GAGCCTCTCATTGTCCGTTCTCTA TAGAGAACGGACAATGAGAGGCTC
NB22 ACCACTGCCATGTATCAAAGTACG CGTACTTTGATACATGGCAGTGGT
NB23 CTTACTACCCAGTGAACCTCCTCG CGAGGAGGTTCACTGGGTAGTAAG
NB24 GCATAGTTCTGCATGATGGGTTAG CTAACCCATCATGCAGAACTATGC
NB25 GTAAGTTGGGTATGCAACGCAATG CATTGCGTTGCATACCCAACTTAC
NB26 CATACAGCGACTACGCATTCTCAT ATGAGAATGCGTAGTCGCTGTATG
NB27 CGACGGTTAGATTCACCTCTTACA TGTAAGAGGTGAATCTAACCGTCG
NB28 TGAAACCTAAGAAGGCACCGTATC GATACGGTGCCTTCTTAGGTTTCA
NB29 CTAGACACCTTGGGTTGACAGACC GGTCTGTCAACCCAAGGTGTCTAG
NB30 TCAGTGAGGATCTACTTCGACCCA TGGGTCGAAGTAGATCCTCACTGA
NB31 TGCGTACAGCAATCAGTTACATTG CAATGTAACTGATTGCTGTACGCA
NB32 CCAGTAGAAGTCCGACAACGTCAT ATGACGTTGTCGGACTTCTACTGG
NB33 CAGACTTGGTACGGTTGGGTAACT AGTTACCCAACCGTACCAAGTCTG
NB34 GGACGAAGAACTCAAGTCAAAGGC GCCTTTGACTTGAGTTCTTCGTCC
NB35 CTACTTACGAAGCTGAGGGACTGC GCAGTCCCTCAGCTTCGTAAGTAG
NB36 ATGTCCCAGTTAGAGGAGGAAACA TGTTTCCTCCTCTAACTGGGACAT
NB37 GCTTGCGATTGATGCTTAGTATCA TGATACTAAGCATCAATCGCAAGC
NB38 ACCACAGGAGGACGATACAGAGAA TTCTCTGTATCGTCCTCCTGTGGT
NB39 CCACAGTGTCAACTAGAGCCTCTC GAGAGGCTCTAGTTGACACTGTGG
NB40 TAGTTTGGATGACCAAGGATAGCC GGCTATCCTTGGTCATCCAAACTA
NB41 GGAGTTCGTCCAGAGAAGTACACG CGTGTACTTCTCTGGACGAACTCC
NB42 CTACGTGTAAGGCATACCTGCCAG CTGGCAGGTATGCCTTACACGTAG
NB43 CTTTCGTTGTTGACTCGACGGTAG CTACCGTCGAGTCAACAACGAAAG
NB44 AGTAGAAAGGGTTCCTTCCCACTC GAGTGGGAAGGAACCCTTTCTACT
NB45 GATCCAACAGAGATGCCTTCAGTG CACTGAAGGCATCTCTGTTGGATC
NB46 GCTGTGTTCCACTTCATTCTCCTG CAGGAGAATGAAGTGGAACACAGC
NB47 GTGCAACTTTCCCACAGGTAGTTC GAACTACCTGTGGGAAAGTTGCAC
NB48 CATCTGGAACGTGGTACACCTGTA TACAGGTGTACCACGTTCCAGATG
NB49 ACTGGTGCAGCTTTGAACATCTAG CTAGATGTTCAAAGCTGCACCAGT
NB50 ATGGACTTTGGTAACTTCCTGCGT ACGCAGGAAGTTACCAAAGTCCAT
NB51 GTTGAATGAGCCTACTGGGTCCTC GAGGACCCAGTAGGCTCATTCAAC
NB52 TGAGAGACAAGATTGTTCGTGGAC GTCCACGAACAATCTTGTCTCTCA
NB53 AGATTCAGACCGTCTCATGCAAAG CTTTGCATGAGACGGTCTGAATCT
NB54 CAAGAGCTTTGACTAAGGAGCATG CATGCTCCTTAGTCAAAGCTCTTG
NB55 TGGAAGATGAGACCCTGATCTACG CGTAGATCAGGGTCTCATCTTCCA
NB56 TCACTACTCAACAGGTGGCATGAA TTCATGCCACCTGTTGAGTAGTGA
NB57 GCTAGGTCAATCTCCTTCGGAAGT ACTTCCGAAGGAGATTGACCTAGC
NB58 CAGGTTACTCCTCCGTGAGTCTGA TCAGACTCACGGAGGAGTAACCTG
NB59 TCAATCAAGAAGGGAAAGCAAGGT ACCTTGCTTTCCCTTCTTGATTGA
NB60 CATGTTCAACCAAGGCTTCTATGG CCATAGAAGCCTTGGTTGAACATG
NB61 AGAGGGTACTATGTGCCTCAGCAC GTGCTGAGGCACATAGTACCCTCT
NB62 CACCCACACTTACTTCAGGACGTA TACGTCCTGAAGTAAGTGTGGGTG
NB63 TTCTGAAGTTCCTGGGTCTTGAAC GTTCAAGACCCAGGAACTTCAGAA
NB64 GACAGACACCGTTCATCGACTTTC GAAAGTCGATGAACGGTGTCTGTC
NB65 TTCTCAGTCTTCCTCCAGACAAGG CCTTGTCTGGAGGAAGACTGAGAA
NB66 CCGATCCTTGTGGCTTCTAACTTC GAAGTTAGAAGCCACAAGGATCGG
NB67 GTTTGTCATACTCGTGTGCTCACC GGTGAGCACACGAGTATGACAAAC
NB68 GAATCTAAGCAAACACGAAGGTGG CCACCTTCGTGTTTGCTTAGATTC
NB69 TACAGTCCGAGCCTCATGTGATCT AGATCACATGAGGCTCGGACTGTA
NB70 ACCGAGATCCTACGAATGGAGTGT ACACTCCATTCGTAGGATCTCGGT
NB71 CCTGGGAGCATCAGGTAGTAACAG CTGTTACTACCTGATGCTCCCAGG
NB72 TAGCTGACTGTCTTCCATACCGAC GTCGGTATGGAAGACAGTCAGCTA
NB73 AAGAAACAGGATGACAGAACCCTC GAGGGTTCTGTCATCCTGTTTCTT
NB74 TACAAGCATCCCAACACTTCCACT AGTGGAAGTGTTGGGATGCTTGTA
NB75 GACCATTGTGATGAACCCTGTTGT ACAACAGGGTTCATCACAATGGTC
NB76 ATGCTTGTTACATCAACCCTGGAC GTCCAGGGTTGATGTAACAAGCAT
NB77 CGACCTGTTTCTCAGGGATACAAC GTTGTATCCCTGAGAAACAGGTCG
NB78 AACAACCGAACCTTTGAATCAGAA TTCTGATTCAAAGGTTCGGTTGTT
NB79 TCTCGGAGATAGTTCTCACTGCTG CAGCAGTGAGAACTATCTCCGAGA
NB80 CGGATGAACATAGGATAGCGATTC GAATCGCTATCCTATGTTCATCCG
NB81 CCTCATCTTGTGAAGTTGTTTCGG CCGAAACAACTTCACAAGATGAGG
NB82 ACGGTATGTCGAGTTCCAGGACTA TAGTCCTGGAACTCGACATACCGT
NB83 TGGCTTGATCTAGGTAAGGTCGAA TTCGACCTTACCTAGATCAAGCCA
NB84 GTAGTGGACCTAGAACCTGTGCCA TGGCACAGGTTCTAGGTCCACTAC
NB85 AACGGAGGAGTTAGTTGGATGATC GATCATCCAACTAACTCCTCCGTT
NB86 AGGTGATCCCAACAAGCGTAAGTA TACTTACGCTTGTTGGGATCACCT
NB87 TACATGCTCCTGTTGTTAGGGAGG CCTCCCTAACAACAGGAGCATGTA
NB88 TCTTCTACTACCGATCCGAAGCAG CTGCTTCGGATCGGTAGTAGAAGA
NB89 ACAGCATCAATGTTTGGCTAGTTG CAACTAGCCAAACATTGATGCTGT
NB90 GATGTAGAGGGTACGGTTTGAGGC GCCTCAAACCGTACCCTCTACATC
NB91 GGCTCCATAGGAACTCACGCTACT AGTAGCGTGAGTTCCTATGGAGCC
NB92 TTGTGAGTGGAAAGATACAGGACC GGTCCTGTATCTTTCCACTCACAA
NB93 AGTTTCCATCACTTCAGACTTGGG CCCAAGTCTGAAGTGATGGAAACT
NB94 GATTGTCCTCAAACTGCCACCTAC GTAGGTGGCAGTTTGAGGACAATC
NB95 CCTGTCTGGAAGAAGAATGGACTT AAGTCCATTCTTCTTCCAGACAGG
NB96 CTGAACGGTCATAGAGTCCACCAT ATGGTGGACTCTATGACCGTTCAG

3. Computer requirements and software

Requisitos informáticos para el MinION Mk1B

Para secuenciar con el MinION Mk1B es necesario tener un ordenador o portátil de alto rendimiento, que pueda soportar la velocidad de adquisición de datos. Encontrará más información en el documento MinION Mk1B IT Requirements.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to MinKNOW protocol.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000

4. Reverse transcription

Material
  • Input RNA in 10 mM Tris-HCl, pH 8.0

Consumibles
  • LunaScript™ RT SuperMix Kit (NEB, cat # E3010)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals

Instrumental
  • Pipeta y puntas P200
  • Pipeta y puntas P2
  • Termociclador
  • Microfuge
  • Cubeta con hielo
Equipo opcional
  • PCR-Cooler (Eppendorf)
  • PCR hood with UV steriliser (optional but recommended to reduce cross-contamination)

Input RNA guidelines

Where sample RNA is added to the below reaction, it is likely advantageous to follow the dilution guidelines proposed by Josh Quick:

qPCR Ct Dilution factor
18–35 none
15–18 1:10
12–15 1:100

If the sample has a low copy number (ct 18–35), use up to 16 µl of sample. Use nuclease-free water to make up any remaining volume. Take note to be aware that co-extracted compounds may inhibit reverse transcription and PCR.

IMPORTANTE

Keep the RNA sample on ice as much as possible to prevent nucleolytic degradation, which may affect sensitivity.

In a clean pre-PCR hood, mix together the following components in each well of a 96-well plate on ice or in a PCR cool rack, such as the Eppendorf PCR-Cooler:

Reagent Volume per well
RNA sample 16 µl
LunaScript RT SuperMix (5x) 4 µl
Total 20 µl

Note: We recommend using up to 16 µl of RNA sample. Use nuclease-free water to make up the final volume to 16 µl if required.

Mix gently by pipetting, and spin down. Return the plate to ice.

Preheat the thermal cycler to 25°C.

Incubate the samples in the thermal cycler using the following program:

Step Temperature Time Cycles
Primer annealing 25°C 2 min 1
cDNA synthesis 55°C 10 min 1
Heat inactivation 95°C 1 min 1
Hold 4°C
FIN DEL PROCESO

While the reverse transcription reaction is running, prepare the primer pools as described in the next section.

5. PCR and clean-up

Consumibles
  • SARS-CoV-2 primers (lab-ready at 100 µM, IDT)
  • Q5® Hot Start High-Fidelity 2X Master Mix (NEB, cat # M0494)
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)
  • Etanol al 80 % recién preparado con agua sin nucleasas
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
  • 96-well deepwell plates
  • 5 ml centrifuge tubes
Instrumental
  • Microfuge
  • Termociclador
  • Mezclador Hula (mezclador giratorio suave)
  • Magnetic rack suitable for 96-well plates
  • Pipeta multicanal y puntas de varios tamaños
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
Equipo opcional
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Agilent Bioanalyzer (or equivalent)
  • PCR hood with UV steriliser (optional but recommended to reduce cross-contamination)

Primer design

To generate tiled PCR amplicons from the SARS-CoV-2 viral cDNA, primers were designed by Josh Quick using Primal Scheme. These primers are designed to generate 400 bp amplicons that overlap by approximately 20 bp. These primer sequences can be found here. Where we show example data outputs in this protocol, the same parameters were used to design primers to the human coronavirus 229E to provide guideline statistics.

IMPORTANTE

We recommend ordering the required primers from IDT in a lab-ready format at 100 µM. However, if primers have been ordered lyophilised, they should be resuspended in water or low-EDTA TE buffer to a final concentration of 100 µM.

IMPORTANTE

We recommend handling the primer stocks and derivatives in a clean template-free PCR hood.

If primers are supplied individually, add 5 µl of each primer from pool A per sample to a 1.5 ml Eppendorf DNA LoBind tube to give a 100 µM stock primer pool.

If primers are supplied individually, add 5 µl of each primer from pool B per sample to a 1.5 ml Eppendorf DNA LoBind tube to give a 100 µM stock primer pool.

Dilute each 100 µM stock 1 in 10 with nuclease-free water to form a working stock of each pool at 10 µM.

Note: To achieve the desired final concentration of each primer in the pool at 0.015 µM in the PCR reaction, 3.7 µl of the 10 µM working stock is needed for each PCR reaction. Two separate PCR reactions will be performed per sample, one for pool A primers and one for pool B. This results in tiled amplicons that have approximately 20 bp overlap.

In a clean pre-PCR hood, set up two individual reactions using primer pool A and primer pool B per sample:

Reagent Volume (pool A) Volume (pool B)
Q5® Hot Start High-Fidelity 2X Master Mix 12.5 µl 12.5 µl
Primer pool at 10 µM (A or B) 3.7 µl 3.7 µl
Nuclease-free water 3.8 µl 3.8 µl
Total 20 µl 20 µl

In a clean 96-well plate, aliquot 20 µl of pool A reaction to each well per sample. Repeat in a new 96-well plate with pool B reaction. Add 5 µl of the reverse-transcribed samples per well in both plates.

IMPORTANTE

Carry forward the negative control from the reverse transcription reaction to monitor cross-contamination events.

We recommend having a single negative for every plate of samples and a standard curve of positive controls.

Mix well by pipetting and spin down in a centrifuge.

Incubate using the following program, with the heated lid set to 105°C:

Step Temperature Time Cycles
Initial denaturation 98°C 30 sec 1
Denaturation

Annealing and extension
98°C

65°C
15 sec

5 min

25–35
Hold 4°C

Note: Cycle number should be varied for low or high viral load samples. Guidelines provided by Josh Quick suggest that 25 cycles should be used for Ct 18–21 up to a maximum of 35 cycles for Ct 35, however this has not been tested here.

IMPORTANTE

If available, a clean post-PCR hood should be used for all steps that involve handling amplified material. Decontamination with UV and or DNAzap between sample batches is recommended.

Combine the 25 µl reaction from pool A and the 25 µl reaction from pool B per sample, into a new deep well plate; one well per sample.

Note: Ensure the sample from pool A corresponds to the sample from pool B.

Resuspend the AMPure XP beads by vortexing.

Add 50 µl of resuspended AMPure XP beads to each well and mix by gently pipetting.

Allow DNA to bind to the beads for 5 minutes at room temperature.

Prepare 50 ml of fresh 80% ethanol in nuclease-free water.

Spin down the 96-well plate and pellet the beads on a magnet for 5 minutes. Keep the plate on the magnet until the eluate is clear and colourless, and pipette off the supernatant.

Keep the plate on the magnet and wash the beads in each well with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repeat the previous step.

Spin down and place the plate back on the magnet. Pipette off any residual ethanol. Allow to dry for ~ 30 seconds, but do not dry the pellet to the point of cracking.

Remove the plate from the magnetic rack and resuspend each pellet in 15 µl nuclease-free water. Incubate for 2 minutes at room temperature.

Pellet the beads on a magnet until the eluate is clear and colourless.

Remove and retain 15 µl of eluate containing the DNA library per well, into a clean 96-well plate.

Dispose of the pelleted beads.

CHECKPOINT

Quantify 1 µl of each eluted sample using a Qubit fluorometer.

Store any unused amplified material at -20°C for use in later experiments.

Expected results

During initial method development, it is useful to analyse 1 µl on an Agilent Bioanalyzer chip or an appropriate amount on an agarose gel. The traces below show expected results where a dilution series of coronavirus 229E was spiked into 100 ng of human RNA extracted from GM12878 (primers were designed against the human coronavirus 229E reference genome using Primal Scheme). Here, Qubit hsDNA results and Agilent Bioanalyser (DNA 12000 assay) traces are shown for 30 and 35 cycles of PCR with input concentrations ranging from 10 pg to 0.001 pg in 100 ng human RNA. While not directly comparable to Ct values of a real biological sample, these give a rough approximation of high to low viral titres. A human-only and reverse transcription negative control were also included.

Note: The viral RNA that was used for this spike-in experiment was obtained from ATCC and is total RNA extracted from human cell lines infected with coronavirus 229E. So, 10 pg of spike-in represents a mix of human and viral RNA, spiked into 100 ng of human RNA extracted from GM12878 cells.

Figure 1 Figure 1. DNA yield after PCR and AMPure XP clean-up for decreasing viral input and different PCR cycle numbers in a background of 100 ng human RNA.

For a 400 bp amplicon, approximately 50 ng (~0.2 pmol) is required for the end-prep step. PCR cycles can be adjusted based on initial results to minimise the number of cycles. For samples that provide less than 50 ng total yield, further PCRs may be carried out on the remaining reverse transcription reaction.

Figure 2 Figure 2. Bioanalyser traces of 1 µl of post-PCR cleaned up samples with decreasing input quantities, spiked into 100 ng human RNA amplified with 30 and 35 cycles. RT negative controls and human-only negative controls show no product in the 300–400 bp range.

6. End-prep

Consumibles
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • NEBNext Ultra II End repair/dA-tailing Module (NEB E7546)
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
Instrumental
  • Pipeta multicanal y puntas de varios tamaños
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P10
  • Thermal cycler
  • Microcentrífuga
  • Cubeta con hielo
IMPORTANTE

For optimal efficiency of the end-prep reaction, use ~200 fmol (50 ng for 400 bp amplicons) of cDNA from the previous step.

IMPORTANTE

We recommended carrying the RT negative control through this step until sequencing.

Determine the volume of the cleaned-up PCR reaction that yields 200 fmol (50 ng) of DNA per sample and aliquot in a clean 96-well plate.

Prepare the NEBNext Ultra II End repair / dA-tailing Module reagents in accordance with manufacturer’s instructions, and place on ice.

For optimal performance, NEB recommend the following:

  1. Thaw all reagents on ice.
  2. Flick and/or invert reagent tube to ensure they are well mixed.
  3. Always spin down tubes before opening for the first time each day.
  4. The Ultra II End prep buffer and FFPE DNA Repair buffer may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for several seconds to ensure the reagent is thoroughly mixed.
  5. The FFPE DNA repair buffer may have a yellow tinge and is fine to use if yellow.

Make up each sample per well to 12.5 µl using nuclease-free water.

Add the following components to each well:

Between each addition, pipette mix 10 - 20 times.

Reagent Volume
Ultra II End-prep reaction buffer 1.75 µl
Ultra II End-prep enzyme mix 0.75 µl
Total 2.5 µl

Mix well by pipetting and spin down in a centrifuge.

Incubar en el termociclador, primero a 20 ºC durante 5 minutos y después a 65 ºC durante 5 minutos más.

FIN DEL PROCESO

Take forward the end-prepped DNA into the native barcode ligation step. However, at this point it is also possible to store the sample at 4°C overnight.

7. Native barcode ligation

Material
  • Native Barcoding Expansion 96 (EXP-NBD196)
  • Short Fragment Buffer (SFB) (tampón para fragmentos cortos)

Consumibles
  • Etanol al 80 % recién preparado con agua sin nucleasas
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • NEB Blunt/TA Ligase Master Mix (NEB, M0367)

Instrumental
  • Magnetic rack suitable for 96-well plates
  • Termociclador
  • Mezclador Hula (mezclador giratorio suave)
  • Mezclador vórtex
  • Cubeta con hielo
  • Microcentrífuga
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P10
Equipo opcional
  • Fluorímetro Qubit (o equivalente para el control de calidad)
IMPORTANTE

To monitor cross-contamination events, we recommend that the RT negative control is carried through this process and a barcode is used to sequence this control.

Thaw the native barcodes at room temperature. Use one barcode per sample. Individually mix the barcodes by pipetting, spin down, and place them on ice.

Thaw the tube of Short Fragment Buffer (SFB) at room temperature, mix by vortexing, spin down and place on ice.

Select a unique barcode for every sample to be run.

In a new 96-well plate, add the reagents in the order given below per well:

Mix well by pipetting and spin down in a centrifuge.

Reagent Volume
Nuclease-free water 3 µl
End-prepped DNA 0.75 µl
Native Barcode 1.25 µl
Blunt/TA Ligase Master Mix 5 µl
Total 10 µl

Mix contents thoroughly by pipetting and spin down briefly.

Using a thermal cycler, incubate at 20°C for 20 mins and at 65°C for 10 mins.

Pool the barcoded library together and carry forward 480 µl of the library.

Resuspend the AMPure XP beads by vortexing.

Add 192 µl of resuspended AMPure XP beads to the 480 µl of pooled reaction and mix by pipetting.

Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.

Prepare 500 µl of fresh 80% ethanol in nuclease-free water.

Spin down the sample and pellet the beads on a magnet for 5 minutes. Keep the tube on the magnet until the eluate is clear and colourless, and pipette off the supernatant.

Wash the beads by adding 700 μl Short Fragment Buffer (SFB). Flick the beads to resuspend, then return the tube to the magnetic rack and allow the beads to pellet. Keep the tube on the magnet until the eluate is clear and colourless. Remove the supernatant using a pipette and discard.

Repetir el paso anterior.

Keep the tube on the magnet and wash the beads with 100 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el precipitado durante 30 s aproximadamente, sin dejar que se agriete.

Remove the tube from the magnetic rack and resuspend the pellet in 35 µl nuclease-free water. Incubate for 2 minutes at room temperature.

Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.

Remove and retain 35 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

CHECKPOINT

Quantify 1 µl of eluted sample using a Qubit fluorometer - recovery aim 2 ng/μl.

FIN DEL PROCESO

Take forward 30-50 ng of pooled barcoded samples in 30 µl into the adapter ligation and clean-up step.

8. Adapter ligation and clean-up

Material
  • Elution Buffer (EB) (tampón de elución) del kit de Oxford Nanopore
  • Short Fragment Buffer (SFB)
  • Adapter Mix II (AMII)

Consumibles
  • NEBNext Quick Ligation Module (NEB E6056) (Módulo de ligación rápida)
  • Agencourt AMPure XP beads (Beckman Coulter™, A63881)
  • Tubos de 1,5 ml Eppendorf DNA LoBind

Instrumental
  • Microcentrífuga
  • Gradilla magnética
  • Mezclador vórtex
  • Mezclador Hula (mezclador giratorio suave)
Equipo opcional
  • Fluorímetro Qubit (o equivalente para el control de calidad)

Adapter Mix II Expansion use

Protocols that use the Native Barcoding Expansions require 5 μl of AMII per reaction. Native Barcoding Expansions EXP-NBD104/NBD114 and EXP-NBD196 contain sufficient AMII for 6 and 12 reactions, respectively (or 12 and 24 reactions when sequencing on Flongle). This assumes that all barcodes are used in one sequencing run.

The Adapter Mix II expansion provides additional AMII for customers who are running subsets of barcodes, and allows a further 12 reactions (24 on Flongle).

Thaw the Elution Buffer (EB), Short Fragment Buffer (SFB), and NEBNext Quick Ligation Reaction Buffer (5x) at room temperature and mix by vortexing. Then spin down and place on ice. Check the contents of each tube are clear of any precipitate.

Spin down the T4 Ligase and the Adapter Mix II (AMII), and place on ice.

Taking the pooled and barcoded DNA, perform adapter ligation as follows, mixing by flicking the tube between each sequential addition.

Reagent Volume
Pooled barcoded sample (30-50 ng) 30 µl
Adapter Mix II (AMII) 5 µl
NEBNext Quick Ligation Reaction Buffer (5X) 10 µl
Quick T4 DNA Ligase 5 µl
Total 50 µl

Ensure the components are thoroughly mixed by pipetting, and spin down.

Incubate the reaction for 10 minutes at room temperature.

IMPORTANTE

The next clean-up step uses Short Fragment Buffer (SFB) and not 80% ethanol to wash the beads. The use of ethanol will be detrimental to the sequencing reaction.

Resuspend the AMPure XP beads by vortexing.

Add 20 µl of resuspended AMPure XP beads to the reaction and mix by pipetting.

Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.

Spin down the sample and pellet the beads on a magnet for 5 minutes. Keep the tube on the magnet until the eluate is clear and colourless, and pipette off the supernatant.

Wash the beads by adding 125 μl Short Fragment Buffer (SFB). Flick the beads to resuspend, then return the tube to the magnetic rack and allow the beads to pellet. Keep the tube on the magnet until the eluate is clear and colourless. Remove the supernatant using a pipette and discard.

Repetir el paso anterior.

Spin down and place the tube back on the magnet. Pipette off any residual supernatant. Allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.

Quitar el tubo de la gradilla magnética y resuspender el precipitado en 15 µl de Elution Buffer (EB). Centrifugar e incubar durante 5 minutos a temperatura ambiente.

Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.

Remove and retain 15 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

CHECKPOINT

Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.

IMPORTANTE

We recommend loading ~15 ng of final prepared library onto a flow cell.

Loading more than the recommend loading input can have a detrimental effect on output. Dilute the library in Elution Buffer (EB) if required.

FIN DEL PROCESO

The prepared library is used for loading onto the flow cell. Store the library on ice or at 4°C until ready to load.

CONSEJO

Recomendaciones de guardado de la biblioteca

Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.

MEDIDA OPCIONAL

If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.

Additional buffer for doing this can be found in the Sequencing Auxiliary Vials expansion (EXP-AUX001), available to purchase separately. This expansion also contains additional vials of Sequencing Buffer (SQB) and Loading Beads (LB), required for loading the libraries onto flow cells.

9. Priming and loading the SpotON flow cell

Material
  • Flow Cell Priming Kit (EXP-FLP002)
  • Loading Beads (LB)
  • Sequencing Buffer (SQB)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)

Instrumental
  • MinION Mk1B or Mk1C
  • SpotON Flow Cell
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
CONSEJO

Acondicionar y cargar la celda de flujo

Recomendamos a los usuarios que miren el vídeo Priming and loading your flow cell antes de realizar su primer experimento.

Thaw the Sequencing Buffer (SQB), Loading Beads (LB), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing, and spin down at room temperature.

To prepare the flow cell priming mix, add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.

Open the MinION device lid and slide the flow cell under the clip.

Press down firmly on the flow cell to ensure correct thermal and electrical contact.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

MEDIDA OPCIONAL

Antes de cargar la biblioteca, verificar la celda de flujo para determinar el número de poros disponible.

Si se ha verificado la celda de flujo con anterioridad, este paso se puede omitir.

Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.

Deslizar la tapa del puerto de purgado en el sentido de las agujas del reloj.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer solución amortiguadora de la celda de flujo. No retire más de 20-30 μl y asegúrese de que la solución cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de purgado, comprobar si hay burbujas de aire bajo la tapa. Retirar una pequeña cantidad de solución amortiguadora para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de purgado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de solución amortiguadora entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de solución amortiguadora circulando desde el puerto de purgado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

Cargar 800 μl de mezcla de acondicionamiento por del puerto de purgado, evitando introducir burbujas de aire. Esperar cinco minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.

Flow Cell Loading Diagrams Step 04 V5 SPANISH

Thoroughly mix the contents of the Loading Beads (LB) by pipetting.

IMPORTANTE

The Loading Beads (LB) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the library for loading as follows:

Reagent Volume per flow cell
Sequencing Buffer (SQB) 37.5 µl
Loading Beads (LB), mixed immediately before use 25.5 µl
DNA library 12 µl
Total 75 µl

Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer (SQB) and Loading Beads (LB) because the fuel in the buffer will start to be consumed by the adapter.

Terminar de acondicionar la celda de flujo:

  1. Levantar con suavidad la tapa del puerto de carga SpotON.
  2. Cargar 200 µl de mezcla de acondicionamiento en el puerto de purgado (no en el puerto SpotON), evitando introducir burbujas de aire.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5 SPANISH 2

Mezclar la biblioteca suavemente con la pipeta, justo antes de cargar.

Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto SpotON de la celda de flujo. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.

Flow Cell Loading Diagram Step 07 V5 SPANISH

Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the MinION device lid.

Flow Cell Loading Diagrams Step 8

Flow Cell Loading Diagrams Step 9

10. Data acquisition and basecalling

Aspectos generales del análisis de datos de nanoporos

Para obtener una descripción completa del análisis de datos de nanoporos, que incluya distintas posibilidades para el análisis de identificación y postidentificicación de bases, consultar el documento Data Analysis.

Cómo empezar a secuenciar

El programa MinKNOW realiza el control del dispositivo de secuenciación, la adquisición de datos y la identificación de bases en tiempo real. Una vez que el usuario ha instalado MinKNOW en su ordenador, hay diferentes maneras de llevar a cabo la secuenciación:

1. Adquisición de datos e identificación de bases en tiempo real con el programa MinKNOW.

Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run".

2. Adquisición de datos e identificación de bases en tiempo real con el dispositivo GridION.

Seguir las instrucciones del manual de usuario de GridION.

3. Adquisición de datos e identificación de bases en tiempo real con el dispositivo MinION Mk1C.

Seguir las instrucciones del manual de usuario de MinION Mk1C.

4. Adquisición de datos e identificación de bases en tiempo real con el dispositivo PromethION.

Seguir las instrucciones de los manuales de usuario de PromethION o PromethION 2 Solo.

5. Adquisición de datos e identificación de bases posterior mediante MinKNOW.

Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run". Al configurar los parámetros del experimento, ajustar la pestaña Basecalling (Identificación de bases) en posición de APAGADO. Al terminar el experimento de secuenciación, seguir las instrucciones del apartado "Post-run analysis" del protocolo de MinKNOW.

IMPORTANTE

Required settings in MinKNOW

When setting the sequencing parameters in MinKNOW, in the Basecalling set barcoding as Enabled, and in the barcoding options, toggle Barcode both ends, Mid-read barcodes and Override minimum mid barcoding score to ON and set Minimum mid barcoding score to 50. Optional: basecalling and/or demultiplexing of sequences can be performed using the stand-alone Guppy software.

Updated lsk109 ARTIC minknow

11. Downstream analysis and expected results

Recommended analysis pipeline

The recommended workflows for the bioinformatics analyses are provided by the ARTIC network and are documented on their web pages at https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html.

The reference guided genome assembly and variant calling are also performed according to the bioinformatics protocol provided by the ARTIC network. Their best practices guide uses the software contained within the FieldBioinformatics project on GitHub.

This workflow uses only the basecalled FASTQ files to perform a high-quality reference-guided assembly of the SARS-CoV-2 genome. Sequenced reads are re-demultiplexed with the requirement that reads must contain a barcode at both ends of the sequence (this only applies to the Classic and Eco PCR tiling of SARS-CoV-2 protocols but not the Rapid Barcoding PCR tiling of SARS-CoV-2), and must not contain internal barcodes. The reads are mapped to the reference genome, primer sequences are excluded and the consensus sequence is polished. The Medaka software is used to call single-nucleotide variants while the ARTIC software reports the high-quality consensus sequence from the workflow.

To further simplify the installation of the coronavirus bioinformatics protocols, the workflows have been packaged into two EPI2ME products

The FieldBioinformatics workflow for SARS-CoV-2 sequence analysis is provided as a Jupyter notebook tutorial in the EPI2ME Labs software. The coronavirus workflow has been augmented to include additional steps that help with the quality control of individual libraries, and aid in the presentation of summary statistics and the final sets of called variants.

The FieldBioinformatics workflow for SARS-CoV-2 sequence analysis is also provided as an EPI2ME workflow – this provides a more accessible interface to a bioinformatics workflow and the provided cloud-based analysis also performs some secondary interpretation by preparing an additional report using the Nextclade software.

Expected results

Here, results are shown based on human coronavirus 229E spiked into 100 ng of human RNA derived from GM12878 cell line. 10 pg–0.001 pg of viral RNA obtained from ATCC was spiked into the human RNA and human-only and reverse transcription negative controls were carried through the prep to sequencing. Every sample underwent 30 and 35 cycles of PCR to determine sensitivity and specificity guidelines, as well as the expected amplicon drop-out rate for each sample.

Note: The viral RNA from ATCC is generated from cell lines infected with human coronavirus 229E. The RNA supplied is total RNA extracted from the cell lines and includes both human and viral RNA. Therefore, the levels of sensitivity are likely to be higher than those reported here.

Sample balancing

The graph below shows the expected sequence balancing if the protocol is followed. Here, equal masses went into the end-prep and native barcode ligation prior to pooling by equal mass for adapter ligation.

Figure 3 Figure 3. Number of reads per sample after native barcode demultiplexing in MinKNOW. All 14 samples were run on a single flow cell.

On-target rate

Sequences from each demultiplexed sample were aligned to the human coronavirus 229E genome using minimap2. The proportion of primary alignments per sample are reported below.

Figure 4 Figure 4. Proportion of reads for each sample aligning to the human coronavirus 229E reference genome.

Assessment of negative controls

After 12 hours of sequencing, the number of reads from the negative control samples aligning to the viral reference genome is shown in the graph below and is compared with the absolute number of sequences aligning to the lowest input (0.001 pg).

Figure 5 Figure 5. Absolute number of reads aligning to the human coronavirus 229E reference genome in the negative controls compared with the lowest input of viral RNA. Sequencing was carried out for 12 hours to pick up low levels of sequences assigned to barcodes representing these samples.

Target coverage for different PCR cycles and viral load

To assess the impact of PCR dropout with lowering input viral load and increasing PCR cycles, Mosdepth was used to calculate the proportion of the viral genome covered to different depth levels. These numbers were calculated after 12 hours of sequencing with 14 samples multiplexed.

Figure 6 Figure 6. Coverage and depth of the human coronavirus 229E genome for different input quantities of viral RNA and different cycle numbers after 12 hours of sequencing on a single flow cell.

How much sequencing is required?

This is unknown in real clinical samples. The graph below can be used to determine the proportion of the genome that could be covered to a given depth with different numbers of reads (30 cycles) at different input amounts in a background of 100 ng human RNA. Note: this is absolute depth.

Figure 7 Figure 7. Subsampled sequences to give an indication of the depth of sequencing achievable covering different amounts of the human coronavirus 229E genome. Input quantities and cycle number titrations show that high cycle numbers should be avoided where possible to minimise amplicon drop out.

This protocol provides amplification of low copy number viral genomes in a tiled method with low off-target amplification and minimal cross-contamination between samples. With <60 copies per reaction (0.001 pg viral input) in 100 ng background human RNA, under ideal circumstances, one should expect to cover >75% of the targeted genome at a depth of 200X within under 50,000 reads in the samples with the lowest viral titre and <20,000 reads in those with a higher viral titre.

12. Reutilización y devolución de celdas de flujo

Material
  • Flow Cell Wash Kit (EXP-WSH004)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a entre 2 °C y 8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

CONSEJO

Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.

Otra posibilidad es seguir el procedimiento de devolución, lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí están las instrucciones para devolver celdas de flujo.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

13. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del chat Live Support de la comunidad Nanopore.

Baja calidad de la muestra

Observaciones Posibles causas Comentarios y acciones recomendadas
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) El método de extracción de ADN no proporciona la pureza necesaria Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Considere realizar un paso adicional de limpieza SPRI.
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre el tema en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.
El ARN tiene una longitud de fragmento más corta de lo esperado El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.

Al trabajar con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas.

Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure

Observación Posible causa Comentarios y acciones recomendadas
Escasa recuperación Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas.

2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza.
Escasa recuperación Los fragmentos de ADN son más cortos de lo esperado Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. SPRI cleanup
Escasa recuperación tras la preparación de extremos El paso de lavado utilizó etanol a <70 % Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto.

14. Issues during the sequencing run

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del chat Live Support de la comunidad Nanopore.

Menos poros al inicio de la secuenciación que tras verificar la celda de flujo

Observaciones Posibles causas Comentarios y acciones recomendadas
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo Se introdujo una burbuja de aire en la matriz de nanoporos Tras comprobar el número de poros presente en la celda de flujo, y antes de acondicionarla, es imprescindible quitar las burbujas que haya cerca del puerto de purgado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra.
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La celda de flujo no está colocada correctamente Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION).
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La presencia de contaminantes en la biblioteca podría haber dañado o bloqueado los poros El número de poros resultante tras la evaluación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación podría deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Error en el script de MinKNOW

Observaciones Posibles causas Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error en el script"
Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir instrucciones de almacenamiento adicionales.

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

Longitud de lectura más corta de lo esperado

Observaciones Posibles causas Comentarios y acciones recomendadas
Longitud de lectura más corta de lo esperado Fragmentación no deseada de la muestra de ADN La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción y preparación de la biblioteca.

1. Consulte la sección de buenas prácticas de extracción en la página Extraction Methods de la comunidad Nanopore.

2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. DNA gel2 En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado.

3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente.

Gran proporción de poros no disponibles

Observaciones Posibles causas Comentarios y acciones recomendadas
Gran proporción de poros no disponibles (se muestran en azul en el panel de canales y en el gráfico de actividad de poros)

image2022-3-25 10-43-25 Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros "no disponibles".
Hay contaminantes presentes en la muestra Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores". Si la porción poros no disponibles se mantiene elevada o aumenta:

1. Realizar un purgado de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004)
2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas.

Gran proporción de poros inactivos

Observaciones Posibles causas Comentarios y acciones recomendadas
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) Se han introducido burbujas de aire en la celda de flujo Las burbujas de aire introducidas durante el acondicionamiento de la celda y carga de la biblioteca podrían dañar los poros de forma permanente. Para conocer las buenas prácticas de acondicionamiento y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell
Gran proporción de poros inactivos/no disponibles Ciertos compuestos copurificados con ADN Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas.

1. Consulte los métodos de extracción de ADN en la página Plant leaf DNA extraction method.
2. Purificar con el kit QIAGEN PowerClean Pro.
3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g.
Gran proporción de poros inactivos/no disponibles Hay contaminantes presentes en la muestra Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación

Observación Posible causa Comentarios y acciones recomendadas
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo.

Fluctuación de la temperatura

Observaciones Posibles causas Comentarios y acciones recomendadas
Fluctuación de la temperatura La celda de flujo ha perdido contacto con el dispositivo Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica.

Error al intentar alcanzar la temperatura deseada

Observaciones Posibles causas Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" El dispositivo ha sido colocado en un lugar con una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). MinKNOW dispone de un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez transcurrido ese tiempo, aparece un mensaje de error, pero el experimento de secuenciación continúa. Secuenciar a una temperatura incorrecta puede provocar disminuciones en el rendimiento y generar índices de calidad Qscore menores. Corrija la ubicación del dispositivo, procurando que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Encontrará más información sobre el control de temperatura del MinION en este enlace.

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 3/10/2023

Document options

MinION