Ligation sequencing gDNA - automated Hamilton NGS STAR 96 with Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)


概览

Barcoding of native genomic DNA libraries

  • Requires the Multiplex Ligation Sequencing Kit XL
  • Automation of library preparation
  • Increase reproducibility
  • No PCR required
  • Features 96 unique barcodes
  • Enables low-plex sequencing
  • Allows analysis of native DNA
  • High sequencing output

For Research Use Only

This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.

Document version: MLKH_9145_v111_revM_15Dec2021

1. Overview of the protocol

重要

This is a Legacy product

This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.

Automated Multiplex Ligation Sequencing Kit XL features:

This kit is recommended for users who:

  • Would like to process multiple samples simultaneously, either with a multichannel pipette or a liquid handling robot
  • Want to optimise their sequencing experiment for output
  • Wish to low-plex samples for Whole Genome Sequencing (WGS)
  • Need a PCR-free method of multiplexing to preserve additional information, such as base modifications
  • Require control over read length
  • Would like to utilise upstream processes, such as size selection or whole genome amplification
重要

To use this automated method, method installation and training is required by Oxford Nanopore Technologies. For more information, please contact your local representative.

Introduction to the automated Multiplex Ligation Sequencing Kit XL protocol

The Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL) is designed to enable low-plex sequencing. Oxford Nanopore Technologies has written an internal script which enables the liquid handling robot to carry out native barcoding of genomic DNA using this sequencing kit. We currently allow the multiplexing of two samples on a flow cell or three samples on two flow cells.

To efficiently load multiple PromethION Flow Cells, we recommend using the Loading multiple PromethION Flow Cells protocol as a guideline.

Steps in the sequencing workflow: Prepare for your experiment You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Automated library preparation

You will need to:

Off-deck:

  • Prepare your sample input plate off-deck

On-deck:

  • Repair the DNA, and prepare the DNA ends for adapter attachment
  • Ligate Native barcodes supplied in the kit to the DNA ends
  • Ligate sequencing adapters supplied in the kit to the DNA ends

Off-deck:

  • Prime the flow cell, and load your DNA library into the flow cell

Automated MLK111

Sequencing

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
  • Demultiplex barcoded reads in MinKNOW or the Guppy basecalling
  • Start the EPI2ME software and select a workflow for further analysis (this step is optional)
重要

我们不建议在测序前混合含条码文库与无条码文库。

Timings

96 samples with 2 samples per flow cell

Process Minutes per step
End Repair and Adenylation 56
Native Barcode Ligation 75
Adapter Ligation 95
Total 226

96 samples with 3 samples across 2 flow cells

Process Minutes per step
End Repair and Adenylation 56
Native Barcode Ligation 73
Adapter Ligation 78
Total 207
重要

可选步骤:DNA片段化以及片段大小筛选

本实验手册不包含DNA片段化步骤。但在某些情况下,将样品片段化可能有助于您的实验。例如,当起始gDNA量较少时(100ng-500ng),将DNA片段化能扩充分子数量,从而提高通量。请参考:牛津纳米孔社区“Extraction methods”(提取方法)板块的 DNA片段化部分

我们也提供了一些用于富集DNA样品中长片段的方法,请参考:牛津纳米孔社区“Extraction methods”(提取方法) 板块的 片段大小筛选部分

重要

Compatibility of this protocol

This protocol should only be used in combination with:

  • Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
  • R9.4.1 flow cells (FLO-PRO002)
  • Flow Cell Wash Kit (EXP-WSH004)

2. Equipment and consumables

材料
  • Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
  • 1200 ng gDNA per sample

耗材
  • NEB Blunt/TA 连接酶预混液(NEB,M0367)
  • NEBNext®快速连接反应缓冲液(NEB,B6058)
  • NEBNext FFPE修复混合液(NEB,M6630)
  • NEBNext Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
  • NEBNext 快速连接模块(NEB,E6056)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • 2.0 ml Eppendorf DNA LoBind tubes
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
  • Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
  • Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
  • Hamilton PCR ComfortLid (Cat# 814300)
  • Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)
  • Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)

仪器
  • P1000 移液枪和枪头
  • P200 移液枪和枪头
  • P20 pipette and tips
  • 盛有冰的冰桶
  • 计时器
  • Qubit荧光计 (或用于质控检测的等效仪器)
  • Hamilton NGS STAR 96 (NGS STAR with Multi-Probe Head 96)
  • Hamilton On-Deck Thermal Cycler (ODTC)
  • Hamilton MTP landscape carrier (cat# 182365)
  • Hamilton Ambion magnet adapter (cat# 10107866)
可选仪器
  • Agilent生物分析仪(或等效仪器)
  • Eppendorf 5424 离心机(或等效器材)

For this protocol, you will need 1200 ng gDNA per sample for R9.4.1 flow cells.

We recommend using 80 ng/µl per sample with a minimum of 15 µl per well when preparing the input plate.

起始DNA

DNA质控

选择符合质量和浓度要求的起始DNA至关重要的。使用过少或过多的DNA,或者质量较差的DNA(如,高度碎片化、含有RNA或化学污染物的DNA)都会影响文库制备。

有关如何对DNA样品进行质控,请参考起始DNA/RNA质控实验指南

化学污染物

从原始样本中提取DNA的方法不同,可能会导致经纯化的DNA中所残留的化学污染物不同。这会影响文库的制备效率和测序质量。请在牛津纳米孔社区的 Contaminants(污染物)页面 了解更多信息。

Input workfile

Input workfiles are required prior to running this protocol on the Hamilton NGS STAR 96.

Oxford Nanopore Technologies will provide a template of the input workfiles in an Excel file.

  • In the DATA tab of the file, there will be the template for the library preparation data
  • In the INFO tab, there will be the template for the identification data

Library preparation data example: 26

Identification data example: 27

Output workfiles will be generated. Below are examples of the output workfiles after a run through of the method.

Library preparation data example: 28

Identification data example: 29

Hamilton NGS STAR 96 and deck layout

This method has been tested and validated using the Hamilton NGS STAR 96 (with Multi-Probe Head 96), Hamilton Ambion magnet adapter, Hamilton MTP landscape carrier and Hamilton On-Deck Thermal Cycler (ODTC).

Deck layout

The deck layout has been updated from the standard layout. Please see the "Prepare the deck" step of this protocol for more details.

Final deck layout unlabelled

Data tracking

For data tracking purposes, we have included the option to add user ID before starting any process. This can be filled using any method the user prefers.

We recommend using barcode stickers to track the input and output plates for data tracking. These can be tracked on the workfile and entered on the UI alongside the reagent lot barcodes when prompted.

Convenient reagent kits are available on request from NEB for the Multiplex Ligation Sequencing Kit XL.

This will contain the appropriate NEB reagents and the required volumes for the protocol on the Hamilton NGS STAR 96. For more information from NEB, please see "Find Products for Nanopore Sequencing".

Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL) contents

sqk-mlk111.96-xl 1

Name Acronym Cap colour Number of vials Fill volume per vial (µl)
Adapter Mix II T AMII T Green 1 320
Sequencing Buffer II SBII Red 4 1,500
Loading Beads II LBII Pink 4 1,500
Loading Solution LS White cap, pink sticker 4 1,500
EDTA EDTA Clear 1 700
Elution Buffer EB 15 ml bottle 1 10,000
Long Fragment Buffer LFB 30 ml bottle 1 20,000
Flush Buffer XL FB 30 ml bottle 6 15,500
Flush Tether FLT White cap, purple sticker 2 1,600
Native Barcodes NB01-96 N/a 1 plate 8 µl per well

Consumables and equipment quantities:

Consumables No. of consumables for all conditions
Hamilton 50 µl CO-RE tips with filter 960
Hamilton 300 µl CO-RE tips with filter 960
Hamilton 1000 µ CO-RE tips with filter 96
Bio-Rad Hard-Shell® 96-well PCR Plate 8

This protocol requires the tip decks to be completely filled before starting a run. Partially filled tip decks will cause an error with the liquid handling robot.

We recommend using Hamilton tips for efficient liquid handling.

Reagent quantities:

Note: Volumes for x48 samples will be available soon.

Full method

Reagents x96 samples
80% ethanol 80 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
Long Fragment Buffer (LFB) 2 bottles
Elution Buffer (EB) 1 bottle
EDTA 1 vial
Native Barcode plate 1 plate
Adapter Mix F (AMII F) 1 vial
NEBNext FFRE DNA Repair Buffer 130 µl
NEBNext FFPE DNA Repair Mix 90 µl
Ultra II End Prep Reaction Buffer 130 µl
Ultra II End Prep Enzyme Mix 120 µl
Blunt/TA Ligase Master Mix 1210 µl
NEBNext Quick Ligation Reaction Buffer (5x) 590 µl
Quick T4 DNA Ligase 310 µl

__Multiple steps combined:__ ### End Repair and Adenylation step to Native Barcode Ligation step
Reagents x96 samples
80% ethanol 80 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
NEBNext FFRE DNA Repair Buffer 130 µl
NEBNext FFPE DNA Repair Mix 90 µl
Ultra II End Prep Reaction Buffer 130 µl
Ultra II End Prep Enzyme Mix 120 µl
Blunt/TA Ligase Master Mix 1210 µl
EDTA 1 vial
Native Barcode plate 1 plate

### Native Barcode Ligation step to Adapter Ligation step
Reagents x96 samples
80% ethanol 40 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
Long Fragment Buffer (LFB) 2 bottles
Elution Buffer (EB) 1 bottle
Blunt/TA Ligase Master Mix 1210 µl
EDTA 1 vial
Native Barcode plate 1 plate
Adapter Mix F (AMII F) 1 vial
NEBNext Quick Ligation Reaction Buffer (5x) 590 µl
Quick T4 DNA Ligase 310 µl

__Individual steps:__ #### End Repair step
Reagents x96 samples
80% ethanol 40 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
NEBNext FFRE DNA Repair Buffer 130 µl
NEBNext FFPE DNA Repair Mix 90 µl
Ultra II End Prep Reaction Buffer 130 µl
Ultra II End Prep Enzyme Mix 120 µl

### Native Barcode Ligation step
Reagents x96 samples
80% ethanol 40 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
Blunt/TA Ligase Master Mix 1210 µl
EDTA 1 vial
Native Barcode plate 1 plate

#### Adapter Ligation step
Reagents x96 samples
AMPure XP Beads 15 ml
Long Fragment Buffer (LFB) 2 bottles
Elution Buffer (EB) 1 bottle
NEBNext Quick Ligation Reaction Buffer (5x) 590 µl
Quick T4 DNA Ligase 310 µl

Native barcode sequences

Component Forward sequence Reverse sequence
NB01 CACAAAGACACCGACAACTTTCTT AAGAAAGTTGTCGGTGTCTTTGTG
NB02 ACAGACGACTACAAACGGAATCGA TCGATTCCGTTTGTAGTCGTCTGT
NB03 CCTGGTAACTGGGACACAAGACTC GAGTCTTGTGTCCCAGTTACCAGG
NB04 TAGGGAAACACGATAGAATCCGAA TTCGGATTCTATCGTGTTTCCCTA
NB05 AAGGTTACACAAACCCTGGACAAG CTTGTCCAGGGTTTGTGTAACCTT
NB06 GACTACTTTCTGCCTTTGCGAGAA TTCTCGCAAAGGCAGAAAGTAGTC
NB07 AAGGATTCATTCCCACGGTAACAC GTGTTACCGTGGGAATGAATCCTT
NB08 ACGTAACTTGGTTTGTTCCCTGAA TTCAGGGAACAAACCAAGTTACGT
NB09 AACCAAGACTCGCTGTGCCTAGTT AACTAGGCACAGCGAGTCTTGGTT
NB10 GAGAGGACAAAGGTTTCAACGCTT AAGCGTTGAAACCTTTGTCCTCTC
NB11 TCCATTCCCTCCGATAGATGAAAC GTTTCATCTATCGGAGGGAATGGA
NB12 TCCGATTCTGCTTCTTTCTACCTG CAGGTAGAAAGAAGCAGAATCGGA
NB13 AGAACGACTTCCATACTCGTGTGA TCACACGAGTATGGAAGTCGTTCT
NB14 AACGAGTCTCTTGGGACCCATAGA TCTATGGGTCCCAAGAGACTCGTT
NB15 AGGTCTACCTCGCTAACACCACTG CAGTGGTGTTAGCGAGGTAGACCT
NB16 CGTCAACTGACAGTGGTTCGTACT AGTACGAACCACTGTCAGTTGACG
NB17 ACCCTCCAGGAAAGTACCTCTGAT ATCAGAGGTACTTTCCTGGAGGGT
NB18 CCAAACCCAACAACCTAGATAGGC GCCTATCTAGGTTGTTGGGTTTGG
NB19 GTTCCTCGTGCAGTGTCAAGAGAT ATCTCTTGACACTGCACGAGGAAC
NB20 TTGCGTCCTGTTACGAGAACTCAT ATGAGTTCTCGTAACAGGACGCAA
NB21 GAGCCTCTCATTGTCCGTTCTCTA TAGAGAACGGACAATGAGAGGCTC
NB22 ACCACTGCCATGTATCAAAGTACG CGTACTTTGATACATGGCAGTGGT
NB23 CTTACTACCCAGTGAACCTCCTCG CGAGGAGGTTCACTGGGTAGTAAG
NB24 GCATAGTTCTGCATGATGGGTTAG CTAACCCATCATGCAGAACTATGC
NB25 GTAAGTTGGGTATGCAACGCAATG CATTGCGTTGCATACCCAACTTAC
NB26 CATACAGCGACTACGCATTCTCAT ATGAGAATGCGTAGTCGCTGTATG
NB27 CGACGGTTAGATTCACCTCTTACA TGTAAGAGGTGAATCTAACCGTCG
NB28 TGAAACCTAAGAAGGCACCGTATC GATACGGTGCCTTCTTAGGTTTCA
NB29 CTAGACACCTTGGGTTGACAGACC GGTCTGTCAACCCAAGGTGTCTAG
NB30 TCAGTGAGGATCTACTTCGACCCA TGGGTCGAAGTAGATCCTCACTGA
NB31 TGCGTACAGCAATCAGTTACATTG CAATGTAACTGATTGCTGTACGCA
NB32 CCAGTAGAAGTCCGACAACGTCAT ATGACGTTGTCGGACTTCTACTGG
NB33 CAGACTTGGTACGGTTGGGTAACT AGTTACCCAACCGTACCAAGTCTG
NB34 GGACGAAGAACTCAAGTCAAAGGC GCCTTTGACTTGAGTTCTTCGTCC
NB35 CTACTTACGAAGCTGAGGGACTGC GCAGTCCCTCAGCTTCGTAAGTAG
NB36 ATGTCCCAGTTAGAGGAGGAAACA TGTTTCCTCCTCTAACTGGGACAT
NB37 GCTTGCGATTGATGCTTAGTATCA TGATACTAAGCATCAATCGCAAGC
NB38 ACCACAGGAGGACGATACAGAGAA TTCTCTGTATCGTCCTCCTGTGGT
NB39 CCACAGTGTCAACTAGAGCCTCTC GAGAGGCTCTAGTTGACACTGTGG
NB40 TAGTTTGGATGACCAAGGATAGCC GGCTATCCTTGGTCATCCAAACTA
NB41 GGAGTTCGTCCAGAGAAGTACACG CGTGTACTTCTCTGGACGAACTCC
NB42 CTACGTGTAAGGCATACCTGCCAG CTGGCAGGTATGCCTTACACGTAG
NB43 CTTTCGTTGTTGACTCGACGGTAG CTACCGTCGAGTCAACAACGAAAG
NB44 AGTAGAAAGGGTTCCTTCCCACTC GAGTGGGAAGGAACCCTTTCTACT
NB45 GATCCAACAGAGATGCCTTCAGTG CACTGAAGGCATCTCTGTTGGATC
NB46 GCTGTGTTCCACTTCATTCTCCTG CAGGAGAATGAAGTGGAACACAGC
NB47 GTGCAACTTTCCCACAGGTAGTTC GAACTACCTGTGGGAAAGTTGCAC
NB48 CATCTGGAACGTGGTACACCTGTA TACAGGTGTACCACGTTCCAGATG
NB49 ACTGGTGCAGCTTTGAACATCTAG CTAGATGTTCAAAGCTGCACCAGT
NB50 ATGGACTTTGGTAACTTCCTGCGT ACGCAGGAAGTTACCAAAGTCCAT
NB51 GTTGAATGAGCCTACTGGGTCCTC GAGGACCCAGTAGGCTCATTCAAC
NB52 TGAGAGACAAGATTGTTCGTGGAC GTCCACGAACAATCTTGTCTCTCA
NB53 AGATTCAGACCGTCTCATGCAAAG CTTTGCATGAGACGGTCTGAATCT
NB54 CAAGAGCTTTGACTAAGGAGCATG CATGCTCCTTAGTCAAAGCTCTTG
NB55 TGGAAGATGAGACCCTGATCTACG CGTAGATCAGGGTCTCATCTTCCA
NB56 TCACTACTCAACAGGTGGCATGAA TTCATGCCACCTGTTGAGTAGTGA
NB57 GCTAGGTCAATCTCCTTCGGAAGT ACTTCCGAAGGAGATTGACCTAGC
NB58 CAGGTTACTCCTCCGTGAGTCTGA TCAGACTCACGGAGGAGTAACCTG
NB59 TCAATCAAGAAGGGAAAGCAAGGT ACCTTGCTTTCCCTTCTTGATTGA
NB60 CATGTTCAACCAAGGCTTCTATGG CCATAGAAGCCTTGGTTGAACATG
NB61 AGAGGGTACTATGTGCCTCAGCAC GTGCTGAGGCACATAGTACCCTCT
NB62 CACCCACACTTACTTCAGGACGTA TACGTCCTGAAGTAAGTGTGGGTG
NB63 TTCTGAAGTTCCTGGGTCTTGAAC GTTCAAGACCCAGGAACTTCAGAA
NB64 GACAGACACCGTTCATCGACTTTC GAAAGTCGATGAACGGTGTCTGTC
NB65 TTCTCAGTCTTCCTCCAGACAAGG CCTTGTCTGGAGGAAGACTGAGAA
NB66 CCGATCCTTGTGGCTTCTAACTTC GAAGTTAGAAGCCACAAGGATCGG
NB67 GTTTGTCATACTCGTGTGCTCACC GGTGAGCACACGAGTATGACAAAC
NB68 GAATCTAAGCAAACACGAAGGTGG CCACCTTCGTGTTTGCTTAGATTC
NB69 TACAGTCCGAGCCTCATGTGATCT AGATCACATGAGGCTCGGACTGTA
NB70 ACCGAGATCCTACGAATGGAGTGT ACACTCCATTCGTAGGATCTCGGT
NB71 CCTGGGAGCATCAGGTAGTAACAG CTGTTACTACCTGATGCTCCCAGG
NB72 TAGCTGACTGTCTTCCATACCGAC GTCGGTATGGAAGACAGTCAGCTA
NB73 AAGAAACAGGATGACAGAACCCTC GAGGGTTCTGTCATCCTGTTTCTT
NB74 TACAAGCATCCCAACACTTCCACT AGTGGAAGTGTTGGGATGCTTGTA
NB75 GACCATTGTGATGAACCCTGTTGT ACAACAGGGTTCATCACAATGGTC
NB76 ATGCTTGTTACATCAACCCTGGAC GTCCAGGGTTGATGTAACAAGCAT
NB77 CGACCTGTTTCTCAGGGATACAAC GTTGTATCCCTGAGAAACAGGTCG
NB78 AACAACCGAACCTTTGAATCAGAA TTCTGATTCAAAGGTTCGGTTGTT
NB79 TCTCGGAGATAGTTCTCACTGCTG CAGCAGTGAGAACTATCTCCGAGA
NB80 CGGATGAACATAGGATAGCGATTC GAATCGCTATCCTATGTTCATCCG
NB81 CCTCATCTTGTGAAGTTGTTTCGG CCGAAACAACTTCACAAGATGAGG
NB82 ACGGTATGTCGAGTTCCAGGACTA TAGTCCTGGAACTCGACATACCGT
NB83 TGGCTTGATCTAGGTAAGGTCGAA TTCGACCTTACCTAGATCAAGCCA
NB84 GTAGTGGACCTAGAACCTGTGCCA TGGCACAGGTTCTAGGTCCACTAC
NB85 AACGGAGGAGTTAGTTGGATGATC GATCATCCAACTAACTCCTCCGTT
NB86 AGGTGATCCCAACAAGCGTAAGTA TACTTACGCTTGTTGGGATCACCT
NB87 TACATGCTCCTGTTGTTAGGGAGG CCTCCCTAACAACAGGAGCATGTA
NB88 TCTTCTACTACCGATCCGAAGCAG CTGCTTCGGATCGGTAGTAGAAGA
NB89 ACAGCATCAATGTTTGGCTAGTTG CAACTAGCCAAACATTGATGCTGT
NB90 GATGTAGAGGGTACGGTTTGAGGC GCCTCAAACCGTACCCTCTACATC
NB91 GGCTCCATAGGAACTCACGCTACT AGTAGCGTGAGTTCCTATGGAGCC
NB92 TTGTGAGTGGAAAGATACAGGACC GGTCCTGTATCTTTCCACTCACAA
NB93 AGTTTCCATCACTTCAGACTTGGG CCCAAGTCTGAAGTGATGGAAACT
NB94 GATTGTCCTCAAACTGCCACCTAC GTAGGTGGCAGTTTGAGGACAATC
NB95 CCTGTCTGGAAGAAGAATGGACTT AAGTCCATTCTTCTTCCAGACAGG
NB96 CTGAACGGTCATAGAGTCCACCAT ATGGTGGACTCTATGACCGTTCAG

3. 计算机要求及软件

PromethION 24/48 的IT配置要求

PromethION设备的硬件能够同时控制多达24个(适用于P24型号)或48个(适用于P48型号)测序实验,并采集数据。此外,设备借助高性能GPU技术,可以实时识别碱基。 请参阅 PromethION IT 配置要求文档,了解更多信息。

PromethION 2 Solo 的IT配置要求

作为一款小型台式测序设备,PromethION 2 Solo可独立或同时运行两张测序芯片。您只需将PromethION 2 Solo连接到GridION Mk1或符合最低技术规格要求的独立计算机,即可实现数据的实时采集和分析。欲了解更多信息,请参阅PromethION 2 Solo IT 配置要求文档

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

EPI2ME (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.

测序芯片质检

我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片12周之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :

测序芯片 芯片上的活性孔数确保不少于
Flongle 测序芯片 50
MinION/GridION 测序芯片 800
PromethION 测序芯片 5000

** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。

4. Prepare the deck

耗材
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
  • Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
  • Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
  • Hamilton PCR ComfortLid (Cat# 814300)
  • Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)
  • Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)
仪器
  • Hamilton NGS STAR 96 (NGS STAR with Multi-Probe Head 96)
  • Hamilton Ambion magnet adapter (cat# 10107866)
  • Hamilton MTP landscape carrier (cat# 182365)
  • Hamilton On-Deck Thermal Cycler (ODTC)
重要

Extra equipment required for the deck layout

  • Hamilton MTP landscape carrier (cat # 182365)
  • Hamilton Ambion magnet adapter (cat # 10107866)

Deck layout change

The deck layout has been updated from the standard NGS STAR 96 layout to improve the efficiency of the robot completing the protocol.

The changes will take approximately 3 minutes.

Final deck layout: Final deck layout unlabelled

Remove the plate stacker and two tube racks.

  • Plate stacker image2021-4-4 8-31-44

  • Two tube racks image2021-4-4 8-32-17

Place both tubes racks in positions 1 and 2.

Positions 1 and 2 are indicated by the arrow below:

Tube rack position

Shift the four tip carriers to the left, starting from position 3.

Place the two trough carriers next to the 300 µl tips and insert the new carrier in the remaining slot on deck.

image2021-9-12 16-9-4

Place the Ambion magnet adapter on the Ambion magnet.

Ambion on deck

步骤结束

Once the deck is correctly set up, the robot can be prepared to run the automation protocol.

5. Pre-processes

材料
  • 1200 ng gDNA per sample
  • 长片段缓冲液(LFB)

耗材
  • 新制备的80%乙醇(用无核酸酶水配制)
  • Nuclease-free water (e.g. ThermoFisher, cat #AM9937)
  • Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
  • Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
  • Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
  • Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)

Users have the option to use pre-process to complete automated upstream methods to prepare their samples.

2a

Click "Pre-processes" to open the following dialogue and select the method you would like to complete and click "Ok".

3

Enter the number of samples to process and click "Ok".

5

Enter the input volume of your samples to process and click "Ok".

4

Dialogue boxes will follow on the UI to illustrate how to correctly load the deck.

步骤结束

Once the process is complete, you will be returned to the method selection page, enabling the user to either start the library preparation process or another pre-process.

6. Complete automated library preparation

材料
  • 1200 ng gDNA per sample
  • Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)

耗材
  • NEB Blunt/TA 连接酶预混液(NEB,M0367)
  • NEBNext®快速连接反应缓冲液(NEB,B6058)
  • NEBNext FFPE修复混合液(NEB,M6630)
  • NEBNext® Ultra™ II End Repair/dA-Tailing Module (E7546)
  • NEBNext 快速连接模块(NEB,E6056)
  • Nuclease-free water (e.g. ThermoFisher, cat #AM9937)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)
  • Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
  • Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
  • Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
  • Hamilton PCR ComfortLid (Cat# 814300)
  • Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)
  • Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)

仪器
  • P100移液枪和枪头
  • Qubit荧光计 (或用于质控检测的等效仪器)
  • Ice bucket with ice

Consumables and equipment quantities:

Consumables No. of consumables for all conditions
Hamilton 50 µl CO-RE tips with filter 960
Hamilton 300 µl CO-RE tips with filter 960
Hamilton 1000 µ CO-RE tips with filter 96
Bio-Rad Hard-Shell® 96-well PCR Plate 8

Note: We recommend using Hamilton tips for efficient liquid handling.

重要

It is required to use full decks of tips to run this protocol for all conditions. Partially used tip decks will cause an error with the liquid handling robot.

Reagent quantities:

Full method

Reagents x96 samples
80% ethanol 80 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
Long Fragment Buffer (LFB) 2 bottles
Elution Buffer (EB) 1 bottle
EDTA 1 vial
Native Barcode plate 1 plate
Adapter Mix F (AMII F) 1 vial
NEBNext FFRE DNA Repair Buffer 130 µl
NEBNext FFPE DNA Repair Mix 90 µl
Ultra II End Prep Reaction Buffer 130 µl
Ultra II End Prep Enzyme Mix 120 µl
Blunt/TA Ligase Master Mix 1210 µl
NEBNext Quick Ligation Reaction Buffer (5x) 590 µl
Quick T4 DNA Ligase 310 µl

Prepare the reagents as follows and store on ice.

Reagent 1. Thaw at room temperature 2. Briefly spin down
NEBNext FFPE DNA Repair Buffer -
NEBNext FFPE DNA Repair Mix Note: Do no vortex
NEBNext Ultra II End-prep repair buffer -
NEBNext Ultra II End-prep enzyme mix Note: Do not vortex
NEBNext Quick Ligation Reaction Buffer (5x) -
NEBNext Quick T4 DNA Ligase Note: Do not vortex
Native barcode plate
Elution Buffer (EB) -
Adapter Mix II F (AMII-F)
Long Fragment Buffer (LFB) -
重要

Do not vortex the NEBNext FFPE DNA Repair Mix, NEBNext Ultra II End Prep Enzyme Mix or NEBNext Quick T4 DNA Ligase.

In a clean hard shell PCR plate, prepare the sample input plate as follows:

  • Dispense 1200 ng DNA into each sample well. Note: We suggest aliquoting your DNA at 80 ng/µl per sample.
  • Make up the volume of each well containing DNA samples to at least 15 µl.

Switch on the Hamilton NGS STAR 96 robot and open the method from the desktop shortcut.

When the method is loaded, click 'Start'.

To find further information, click 'About MLK111.96-XL' to view the automation section of the Community in the default web browser.

1a

Click 'MLK111.96-XL' to proceed to the method parameter selection.

2

可选操作

Before starting, a user ID can be entered for traceability purposes.

Note: Any format of user ID can be used.

23

Choose the number of samples to process from the drop-down menu, your multiplexing method and the file directory to the input workfile. Click 'Ok' to continue.

Current multiplexing options include either:

  • 2 samples on 1 flow cell
  • 3 samples on 2 flow cells

__Note:__ When completing the full method, only 96 or 48 samples are available as options.

6

重要

An error message will appear if an invalid number of samples is selected for your choosen multiplexing method.

7

Enter the barcode of the input plate containing the samples and the output plate which will contain the prepared DNA libraries.

15

重要

If the entered barcodes do not match what is stored in the workfile, the correct barcodes will need to be re-entered.

16

可选操作

Select where to start on a previously used native barcode plate when using 48 or fewer samples.

22

Click "Full method" to run the entire automated protocol.

Note: We recommend using the "Select steps" option if sample quantification is required after each step. Please see the "Select steps in the automated library preparation" step.

8

可选操作

For traceability purposes, the lot barcodes of the reagents can be entered for the Oxford Nanopore Technologies (ONT) reagents, the native barcode plate (NBD) and the NEB reagents used.

24

Once settings for the run have been selected, there will be a series of dialogues illustrating how to load the deck depending on steps selected.

Note: The following screenshots are an example of performing the full method for x96 samples.

重要

Ensure all seals are removed from plates before loading the deck.

Place the Hamilton Comfort PCR lid on the PCR lid position.

11

重要

Ensure the tip decks are full before running the protocol.

Load 50 µl tips as indicated on screen.

12

Load 300 µl tips as indicated on screen.

13

Mix by inverting and prepare the following reagents in troughs:

For X96 samples:

Reagent Volume per trough No. of troughs Total volume
Freshly prepared 80% ethanol 40 ml 2 80 ml
Agencourt AMPure XP beads 15 ml 1 15 ml
Nuclease-free water 10 ml 1 10 ml
Long Fragment Buffer (LFB) 2 bottles 1 2 bottles
Elution Buffer (EB) 1 bottle 1 1 bottle
重要

Ensure to use the correct volume of AMPure XP beads and they are well mixed before use by vortexing.

Adding a larger volume of AMPure XP beads may be detrimental to the run because the robot is programmed to mix a defined volume which may not sufficiently mix if a significantly higher volume than recommended is used.

Load the reagent troughs as indicated on screen.

14

Ensure the foil seal is removed from the native barcode plate foil seal.

Load the native barcode plate, 3 fresh PCR plates and the input plate containing the DNA samples.

17

Load 1000 µl tips as indicated on screen and ensure the magnet is in place with the adapter for PCR plates.

18

Load the CPAC module as indicated on screen with the reagent tubes before loading on deck.

19

1 2 3 4
A FFPE DNA Repair Buffer Empty 1.5 ml Eppendorf LoBind tube Blunt/TA Ligase Master Mix AMII-F
B FFPE DNA Repair Mix - EDTA Quick Ligation Reaction Buffer
C Ultra II End-prep Buffer - - Quick T4 DNA Ligase
D Ultra II End-prep Enzyme Mix - - Empty 1.5 ml Eppendorf LoBind tube

Volumes required:

Reagent x96 samples
3 samples across 2 flow cells
x96 samples
2 samples per flow cell
x48 samples
3 samples across 2 flow cells
x48 samples
2 samples per flow cell
NEBNext FFPE DNA Repair buffer 130 µl 130 µl 72.45 µl 72.45 µl
NEBNext FFPE DNA Repair Enzyme Mix 90 µl 90 µl 41.4 µl 41.4 µl
Ultra II End Prep Reaction Buffer 130 µl 130 µl 72.45 µl 72.45 µl
Ultra II End Prep Enzyme Mix 120 µl 120 µl 62.1 µl 62.1 µl
Blunt/TA Ligase Master Mix 1210 µl 1210 µl 738 µl 738 µl
AMII T 270.4 µl 310 µl 138 µl 202.8 µl
NEBNext Quick Ligation Reaction Buffer (5x) 540.8 µl 590 µl 276 µl 405.6 µl
Quick T4 DNA Ligase 270.4 µl 310 µl 138 µl 202.8 µl

Once the deck is correctly loaded, click 'Begin method' to start with the parameters selected before loading.

20

During the thermal cycle step for Step 1: End repair and adenylation thermal cycling reaction, the user will be prompted to remove the input plate with the input samples and to load 3 fresh PCR plates as indicated on screen.

This dialogue will prompt the user to remove their input plate: 25

21

可选操作

Quantify 1 µl of eluted sample using a Qubit fluorometer.

重要

We recommend loading >10 fmols of this final prepared library onto the flow cell for R9.4.1 flow cells.

步骤结束

构建好的文库即可用于测序芯片上样。在上样前,请将文库置于冰上或4℃条件下保存。

提示

文库保存建议

若为 短期 保存或重复使用(例如在清洗芯片后再次上样),我们建议将文库置于Eppendorf LoBind 离心管中 4℃ 保存。 若为一次性使用且储存时长 __超过3个月__,我们建议将文库置于Eppendorf LoBind 离心管中 -80℃ 保存。

可选操作

If quantities allow, the libraries may be diluted in Elution Buffer (EB) for splittling across multiple flow cells.

7. Select steps in the automated library preparation

材料
  • 1200 ng gDNA per sample
  • Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)

耗材
  • NEB Blunt/TA 连接酶预混液(NEB,M0367)
  • NEBNext®快速连接反应缓冲液(NEB,B6058)
  • NEBNext FFPE修复混合液(NEB,M6630)
  • NEBNext® Ultra™ II End Repair/dA-Tailing Module (E7546)
  • NEBNext 快速连接模块(NEB,E6056)
  • Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • 1.5 ml Eppendorf DNA LoBind离心管
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)
  • Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
  • Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
  • Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
  • Hamilton PCR ComfortLid (Cat# 814300)
  • Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)
  • Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)

仪器
  • P100移液枪和枪头
  • Qubit荧光计 (或用于质控检测的等效仪器)
  • Ice bucket with ice

Users have the option to run select steps in the protocol. We recommend quantification after End Repair for barcode balancing.

Consumables and equipment quantities:

Consumables No. of consumables for all conditions
Hamilton 50 µl CO-RE tips with filter 960
Hamilton 300 µl CO-RE tips with filter 960
Hamilton 1000 µ CO-RE tips with filter 96
Bio-Rad Hard-Shell® 96-well PCR Plate 8

Note: We recommend using Hamilton tips for efficient liquid handling.

重要

It is required to use full decks of tips to run this protocol for all conditions. Partially used tip decks will cause an error with the liquid handling robot.

Reagent quantities:

Note: Volumes for x48 samples will be available soon.

Multiple steps:

End Repair and Adenylation step to Native Barcode Ligation step

Reagents x96 samples
80% ethanol 80 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
NEBNext FFRE DNA Repair Buffer 130 µl
NEBNext FFPE DNA Repair Mix 90 µl
Ultra II End Prep Reaction Buffer 130 µl
Ultra II End Prep Enzyme Mix 120 µl
Blunt/TA Ligase Master Mix 1210 µl
EDTA 1 vial
Native Barcode plate 1 plate

### Native Barcode Ligation step to Adapter Ligation step
Reagents x96 samples
80% ethanol 40 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
Long Fragment Buffer (LFB) 2 bottles
Elution Buffer (EB) 1 bottle
Blunt/TA Ligase Master Mix 1210 µl
EDTA 1 vial
Native Barcode plate 1 plate
Adapter Mix F (AMII F) 1 vial
NEBNext Quick Ligation Reaction Buffer (5x) 590 µl
Quick T4 DNA Ligase 310 µl

__Individual steps:__ ### End Repair step
Reagents x96 samples
80% ethanol 40 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
NEBNext FFRE DNA Repair Buffer 130 µl
NEBNext FFPE DNA Repair Mix 90 µl
Ultra II End Prep Reaction Buffer 130 µl
Ultra II End Prep Enzyme Mix 120 µl

### Native Barcode Ligation step
Reagents x96 samples
80% ethanol 40 ml
AMPure XP Beads 15 ml
Nuclease-free water 10 ml
Blunt/TA Ligase Master Mix 1210 µl
EDTA 1 vial
Native Barcode plate 1 plate

### Adapter Ligation step
Reagents x96 samples
AMPure XP Beads 15 ml
Long Fragment Buffer (LFB) 2 bottles
Elution Buffer (EB) 1 bottle
NEBNext Quick Ligation Reaction Buffer (5x) 590 µl
Quick T4 DNA Ligase 310 µl

Prepare the reagents as follows and store on ice.

Reagent 1. Thaw at room temperature 2. Briefly spin down
NEBNext FFPE DNA Repair Buffer -
NEBNext FFPE DNA Repair Mix Note: Do no vortex
NEBNext Ultra II End-prep repair buffer -
NEBNext Ultra II End-prep enzyme mix Note: Do not vortex
NEBNext Quick Ligation Reaction Buffer (5x) -
NEBNext Quick T4 DNA Ligase Note: Do not vortex
Native barcode plate
Elution Buffer (EB) -
Adapter Mix II F (AMII-F)
Long Fragment Buffer (LFB) -
重要

Do not vortex the NEBNext FFPE DNA Repair Mix, NEBNext Ultra II End Prep Enzyme Mix or NEBNext Quick T4 DNA Ligase.

In a clean hard shell PCR plate, prepare the sample input plate as follows:

  • Dispense 1200 ng DNA into each sample well. Note: We suggest aliquoting your DNA at 80 ng/µl per sample.
  • Make up the volume of each well containing DNA samples to at least 15 µl.

Switch on the Hamilton NGS STAR 96 robot and open the method from the desktop shortcut.

When the method is loaded, click 'Start'.

To find further information, click 'About MLK111.96-XL' to view the automation section of the Community in the default web browser.

1a

Click 'MLK111.96-XL' to proceed to the method parameter selection.

2

可选操作

Before starting, a user ID can be entered for traceability purposes.

Note: Any format of user ID can be used.

23

Choose the number of samples to process from the drop-down menu, your multiplexing method and the file directory to the input workfile. Click 'Ok' to continue.

Current multiplexing options include either:

  • 2 samples on 1 flow cell
  • 3 samples on 2 flow cells

__Note:__ When the method is carried out using selected steps, there will be more sample number options for the "Adapter Ligation" step as this is after pooling.

6

重要

An error message will appear if an invalid number of samples is selected for your choosen multiplexing method.

7

Enter the barcode of the input plate containing the samples and the output plate which will contain the prepared DNA libraries.

15

重要

If the entered barcodes do not match what is stored in the workfile, the correct barcodes will need to be re-entered.

16

可选操作

Select where to start on a previously used native barcode plate when using 48 or fewer samples.

22

Click "Select steps" and click "Ok".

8a

Choose a specific starting point from the drop-down menu on the protocol step selection dialogue.

9

To perform a singular step, check "Perform only selected step" and click "Ok".

To perform multiple steps, leave the check box unselected and click "Ok".

Users will only be able to select a step that canonically comes after the first step selected.

10

Once settings and the steps for the run have been selected, there will be a series of dialogues illustrating how to load the deck depending on the steps selected.

For an example of the dialogues illustrating how to load the deck, please see the "Complete automated library preparation" step.

步骤结束

The library can be either stored or loaded onto a flow cell once adapter ligation has been completed.

重要

We recommend loading >10 fmols of this final prepared library onto the flow cell for R9.4.1 flow cells.

提示

文库保存建议

若为 短期 保存或重复使用(例如在清洗芯片后再次上样),我们建议将文库置于Eppendorf LoBind 离心管中 4℃ 保存。 若为一次性使用且储存时长 __超过3个月__,我们建议将文库置于Eppendorf LoBind 离心管中 -80℃ 保存。

可选操作

If quantities allow, the libraries may be diluted in Elution Buffer (EB) for splittling across multiple flow cells.

8. Priming and loading multiple flow cells on a PromethION

材料
  • Flush Buffer (FB)
  • Flush Tether (FLT)

耗材
  • PromethION 测序芯片
  • 1.5 ml Eppendorf DNA LoBind离心管
  • 2 ml Eppendorf DNA LoBind 离心管

仪器
  • PromethION 2 Solo 测序设备
  • PromethION测序设备
  • PromethION 测序芯片遮光片
  • P1000移液枪和枪头
  • P200 移液枪和枪头
  • P20 移液枪和枪头

Thaw the Flush Tether (FLT) and Flush Buffer (FB) at room temperature before mixing the reagents by vortexing and spin down at room temperature.

重要

Scale up reagent volumes as needed.

Ensure to prepare enough reagents for the total number of flow cells being processed and to take into account extra volume required for pipetting errors.

提示

Each vial provides enough reagent for the preparation of 12 samples. Thaw the appropriate number of vials of each reagent.

Prepare the flow cell priming mix in a suitable vial for the number of flow cells to flush. Once combined, mix well by briefly vortexing.

Reagent Volume per flow cell
Flush Tether (FLT) 30 µl
Flush Buffer (FB) 1,170 µl
重要

将芯片从冰箱中取出后,请将其置于室温环境孵育20分钟再插入PromethION测序仪。潮湿环境下的测序芯片上可能会形成冷凝水。因此,请检查测序芯片顶部和底部的金色连接器引脚处是否有水凝结。如有,请使用无纤维布擦干。请确保测序芯片底部有热垫(黑色)覆盖。

对 PromethION 2 Solo,请按以下步骤为测序芯片上样:

  1. 将测序芯片平放在金属板上。

  2. 将测序芯片推入对接端口,直至金色引脚或绿色电路板不可见。

J2068 FC-into-P2-animation V5

对PromethION 24/48,将测序芯片插入相应卡槽的对接端口:

  1. 将测序芯片与连接器横竖对齐,以便顺利卡入。

  2. 用力下压芯片至卡槽,并确认卡夹位置归位。

Prom Flowcell Loading 1a 中文

Prom Flowcell Loading 1b 中文

重要

如插入配置测试芯片的角度出现偏差,可能会损坏PromethION上的引脚并影响测序结果。如您发现 PromethION测序仪芯片位置上的引脚损坏,请通过电子邮件(support@nanoporetech.com)或微信公众号在线支持(NanoporeSupport)联系我们的技术支持团队。

Screenshot 2021-04-08 at 12.08.37

If not already completed, perform a flow cell check on all flow cells.

Please refer to the Flow Cell Check protocol for further information.

顺时针滑动加液孔孔盖,将其打开。

Prom Flowcell Loading 2 中文

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

在加液孔打开的状态下,按下述步骤吸取少量液体,同时避免引入气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入加液孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。

Prom Flowcell Loading 3 中文

Load 500 µl of the priming mix into the flow cell via the inlet port, avoiding the introduction of air bubbles. Wait five minutes.

Step 4 v1

缓慢向芯片的加液口中加入500 µl预处理液,完成芯片的预处理。

Prom Flowcell Loading 5 中文

临上样前,用移液枪轻轻吹打混匀制备好的文库。

Using a P1000, insert the pipette tip into the inlet port and add 150 µl of library.

Step 6 v2

合上加液孔孔盖。

Prom Flowcell Loading 7 中文

重要

为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。

我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。

如遮光片不在测序芯片上,请您按照以下步骤安装:

  1. 将遮光片的中空部分(空槽)与测序芯片的加液孔孔盖对齐。确保遮光片的前沿位于测序芯片ID的上方。
  2. 用力下压遮光片的卡垫部分,遮光片空槽边缘会随卡垫卡入加液孔孔盖下方。

Prom Flowcell Loading 8a 中文

Prom Flowcell Loading 8b 中文

步骤结束

准备就绪后,合上PromethION设备上盖。

请在为PromethION芯片上样后,等待10分钟再启动实验,以提高芯片产出。

For multiple flow cell washing, use the same experiment name and identifying sample IDs for all runs to enable all flow cells to be paused simultaneously.

Screenshot 2023-02-14 114901

9. Data acquisition and basecalling

纳米孔数据分析概览

有关纳米孔数据分析的完整概述,包括碱基识别和次级分析,请参阅 数据分析 文档。

如何开始测序

MinKNOW软件负责仪器控制,数据采集和实时碱基识别。如您已在计算机上安装MinKNOW,则可选择以下几种途径开展测序:

1. 使用计算机上的MinKNOW进行实时数据采集和碱基识别

请按照 MinKNOW 实验指南 的说明操作:从“开始测序”部分起,到“MinKNOW运行结束”部分止。

2. 使用MinION Mk1B/Mk1D测序仪进行实时数据采集和碱基识别

请按照 MinION Mk1B 用户手册MinION Mk1D 用户手册中的说明操作。

3. 使用MinION Mk1C测序仪进行实时数据采集和碱基识别

请参照 MinION Mk1C 用户手册中的说明操作。

4. 使用GridION进行实时数据采集和碱基识别

请参照 GridION 用户手册 中的说明操作。

5. 使用PromethION测序仪进行实时数据采集和碱基识别

请参照 PromethION 用户手册PromethION 2 Solo 用户手册中的说明操作。

6. 使用计算机上的MinKNOW进行数据采集,过后再用NinKNOW进行线下碱基识别

请按照 MinKNOW 实验指南 中的说明操作:从“开始测序”部分起,到“MinKNOW运行结束”部分止。 当您设置实验参数时,请将 碱基识别 选项设为“关”。 测序实验结束后,请按照 MinKNOW 实验指南本地分析 部分操作。

10. Downstream analysis

Post-basecalling analysis

There are several options for further analysing your basecalled data:

1. EPI2ME platform

The EPI2ME platform is a cloud-based data analysis service developed by Metrichor Ltd., a subsidiary of Oxford Nanopore Technologies. The EPI2ME platform offers a range of analysis workflows, e.g. for metagenomic identification, barcoding, alignment, and structural variant calling. The analysis requires no additional equipment or compute power, and provides an easy-to-interpret report with the results. For instructions on how to run an analysis workflow in EPI2ME, please follow the instructions in the EPI2ME protocol, beginning at the "Starting an EPI2ME workflow" step.

2. Bioinformatics tutorials

For more in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials, which are available in the Bioinformatics resource section of the Community. The tutorials take the user through installing and running pre-built analysis pipelines, which generate a report with the results. The tutorials are aimed at biologists who would like to analyse data without the help of a dedicated bioinformatician, and who are comfortable using the command line.

3. Research analysis tools

Oxford Nanopore Technologies' Research division has created a number of analysis tools, which are available in the Oxford Nanopore GitHub repository. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.

4. Community-developed analysis tools

If a data analysis method for your research question is not provided in any of the resources above, please refer to the Community-developed data analysis tool library. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.

11. 测序芯片的重复利用及回收

材料
  • 测序芯片清洗剂盒(EXP-WSH004)

完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于+2至+8℃保存。

您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南

提示

我们建议您在停止测序实验后尽快清洗测序芯片。如若无法实现,请将芯片留在测序设备上,于下一日清洗。

或者,请按照回收程序将测序芯片返还至Oxford Nanopore。

您可在此处找到回收测序芯片的说明。

重要

如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。

12. DNA/RNA提取和文库制备过程中可能出现的问题

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

低质量样本

现象 可能原因 措施及备注
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) 用户所使用的DNA提取方法未能达到所需纯度 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

请考虑将样品再次用磁珠纯化。
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) RNA在提取过程中降解 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。
RNA的片段长度短于预期 RNA在提取过程中降解 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。

我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染.

经AMPure磁珠纯化后的DNA回收率低

现象 可能原因 措施及备注
低回收率 AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。

2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。
低回收率 DNA片段短于预期 AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 SPRI cleanup
末端修复后的DNA回收率低 清洗步骤所用乙醇的浓度低于70% 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。

13. Issues during the sequencing run

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数

现象 可能原因 措施及备注
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 纳米孔阵列中引入了气泡 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 测序芯片没有正确插入测序仪 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 文库中残留的污染物对纳米孔造成损害或堵塞 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。

如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

MinKNOW脚本失败

现象 可能原因 措施及备注
MinKNOW显示 "Script failed”(脚本失败)
重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

读长短于预期

现象 可能原因 措施及备注
读长短于预期 DNA样本降解 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。

1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。

2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。DNA gel2 在上图中,样本1为高分子量DNA,而样本2为降解样本。

3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。

大量纳米孔处于不可用状态

现象 可能原因 Comments and actions
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示)

image2022-3-25 10-43-25 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。
样本中含有污染物 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加:

1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或
2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。

大量纳米孔处于失活状态

现象 可能原因 措施及备注
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) 测序芯片中引入了气泡 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。
大量纳米孔处于失活/不可用状态 文库中存在与DNA共纯化的化合物 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。

1. 请参考 植物叶片DNA提取方法
2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。
3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。
大量纳米孔处于失活/不可用状态 样本中含有污染物 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。

运行过程中过孔速度和数据质量(Q值)降低

现象 可能原因 措施及备注
运行过程中过孔速度和数据质量(Q值)降低 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。

温度波动

现象 可能原因 措施及备注
温度波动 测序芯片和仪器接触不良 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。

未能达到目标温度

现象 可能原因 措施及备注
MinKNOW显示“未能达到目标温度” 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION温度控制的更多信息,请参考此 FAQ (常见问题)文档。

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 12/6/2023

Document options

PromethION