Ligation sequencing gDNA - automated Hamilton NGS STAR 96 with Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
- Home
- Documentation
- Ligation sequencing gDNA - automated Hamilton NGS STAR 96 with Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
PromethION: Protocol
Ligation sequencing gDNA - automated Hamilton NGS STAR 96 with Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL) V MLKH_9145_v111_revM_15Dec2021
Barcoding of native genomic DNA libraries
- Requires the Multiplex Ligation Sequencing Kit XL
- Automation of library preparation
- Increase reproducibility
- No PCR required
- Features 96 unique barcodes
- Enables low-plex sequencing
- Allows analysis of native DNA
- High sequencing output
For Research Use Only
This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Automated library preparation
- 4. Prepare the deck
- 5. Pre-processes
- 6. Complete automated library preparation
- 7. Select steps in the automated library preparation
- 8. Priming and loading multiple flow cells on a PromethION
Sequencing and data analysis
- 9. Data acquisition and basecalling
- 10. Downstream analysis
- 11. Reutilización y devolución de celdas de flujo
Troubleshooting
Descripción general
Barcoding of native genomic DNA libraries
- Requires the Multiplex Ligation Sequencing Kit XL
- Automation of library preparation
- Increase reproducibility
- No PCR required
- Features 96 unique barcodes
- Enables low-plex sequencing
- Allows analysis of native DNA
- High sequencing output
For Research Use Only
This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.
1. Overview of the protocol
IMPORTANTE
This is a Legacy product
This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.
Automated Multiplex Ligation Sequencing Kit XL features:
This kit is recommended for users who:
- Would like to process multiple samples simultaneously, either with a multichannel pipette or a liquid handling robot
- Want to optimise their sequencing experiment for output
- Wish to low-plex samples for Whole Genome Sequencing (WGS)
- Need a PCR-free method of multiplexing to preserve additional information, such as base modifications
- Require control over read length
- Would like to utilise upstream processes, such as size selection or whole genome amplification
IMPORTANTE
To use this automated method, method installation and training is required by Oxford Nanopore Technologies. For more information, please contact your local representative.
Introduction to the automated Multiplex Ligation Sequencing Kit XL protocol
The Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL) is designed to enable low-plex sequencing. Oxford Nanopore Technologies has written an internal script which enables the liquid handling robot to carry out native barcoding of genomic DNA using this sequencing kit. We currently allow the multiplexing of two samples on a flow cell or three samples on two flow cells.
To efficiently load multiple PromethION Flow Cells, we recommend using the Loading multiple PromethION Flow Cells protocol as a guideline.
Steps in the sequencing workflow: Prepare for your experiment You will need to:
- Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Automated library preparation
You will need to:
Off-deck:
- Prepare your sample input plate off-deck
On-deck:
- Repair the DNA, and prepare the DNA ends for adapter attachment
- Ligate Native barcodes supplied in the kit to the DNA ends
- Ligate sequencing adapters supplied in the kit to the DNA ends
Off-deck:
- Prime the flow cell, and load your DNA library into the flow cell
Sequencing
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Demultiplex barcoded reads in MinKNOW or the Guppy basecalling
- Start the EPI2ME software and select a workflow for further analysis (this step is optional)
IMPORTANTE
We do not recommend mixing barcoded libraries with non-barcoded libraries prior to sequencing.
Timings
96 samples with 2 samples per flow cell
Process | Minutes per step |
---|---|
End Repair and Adenylation | 56 |
Native Barcode Ligation | 75 |
Adapter Ligation | 95 |
Total | 226 |
96 samples with 3 samples across 2 flow cells
Process | Minutes per step |
---|---|
End Repair and Adenylation | 56 |
Native Barcode Ligation | 73 |
Adapter Ligation | 78 |
Total | 207 |
IMPORTANTE
Optional fragmentation and size selection
By default, the protocol contains no DNA fragmentation step, however in some cases it may be advantageous to fragment your sample. For example, when working with lower amounts of input gDNA (100 ng – 500 ng), fragmentation will increase the number of DNA molecules and therefore increase throughput. Instructions are available in the DNA Fragmentation section of Extraction methods.
Additionally, we offer several options for size-selecting your DNA sample to enrich for long fragments - instructions are available in the Size Selection section of Extraction methods.
IMPORTANTE
Compatibility of this protocol
This protocol should only be used in combination with:
- Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
- R9.4.1 flow cells (FLO-PRO002)
- Flow Cell Wash Kit (EXP-WSH004)
2. Equipment and consumables
Material
- Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
- 1200 ng gDNA per sample
Consumibles
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- NEBNext® Quick Ligation Reaction Buffer (NEB, B6058)
- NEBNext FFPE Repair Mix (NEB M6630) (mezcla de reparación de ADN)
- NEBNext Ultra II End Repair/dA-tailing Module (NEB E7546) (Módulo de reparación de extremos/Adición de dA)
- NEBNext Quick Ligation Module (NEB E6056) (Módulo de ligación rápida)
- Agua sin nucleasas (p. ej., ThermoFisher AM9937)
- Etanol al 80 % recién preparado con agua sin nucleasas
- Kit de ensayo Qubit dsDNA HS (Invitrogen Q32851)
- Tubos de 1,5 ml Eppendorf DNA LoBind
- 2.0 ml Eppendorf DNA LoBind tubes
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
- Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
- Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
- Hamilton PCR ComfortLid (Cat# 814300)
- Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)
- Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)
Instrumental
- P1000 pipette and tips
- Pipeta y puntas P200
- P20 pipette and tips
- Cubeta con hielo
- Temporizador
- Qubit fluorometer (or equivalent)
- Hamilton NGS STAR 96 (NGS STAR with Multi-Probe Head 96)
- Hamilton On-Deck Thermal Cycler (ODTC)
- Hamilton MTP landscape carrier (cat# 182365)
- Hamilton Ambion magnet adapter (cat# 10107866)
Equipo opcional
- Bioanalizador Agilent (o equivalente)
- Centrifuga Eppendorf 5424 (o equivalente)
For this protocol, you will need 1200 ng gDNA per sample for R9.4.1 flow cells.
We recommend using 80 ng/µl per sample with a minimum of 15 µl per well when preparing the input plate.
Cantidad de muestra inicial de ADN
Cómo realizar un control de calidad del ADN de la muestra inicial
Es importante que la muestra de ADN cumpla con los requisitos de cantidad y calidad. Usar demasiado ADN, poco o de mala calidad (p. ej., que esté muy fragmentado, que contenga ARN o contaminantes químicos), puede afectar a la preparación de la biblioteca.
Para realizar un control de calidad en la muestra de ADN, consulte el protocolo Input DNA/ RNA QC
Contaminantes químicos
Dependiendo de cómo se extraiga el ADN de la muestra cruda, ciertos contaminantes químicos pueden permanecer en el ADN purificado, lo cual afecta la eficacia de la preparación de la biblioteca y la calidad de la secuenciación. Encontrará más información sobre contaminantes en la página Contaminants de la comunidad Nanopore.
Input workfile
Input workfiles are required prior to running this protocol on the Hamilton NGS STAR 96.
Oxford Nanopore Technologies will provide a template of the input workfiles in an Excel file.
- In the DATA tab of the file, there will be the template for the library preparation data
- In the INFO tab, there will be the template for the identification data
Library preparation data example:
Identification data example:
Output workfiles will be generated. Below are examples of the output workfiles after a run through of the method.
Library preparation data example:
Identification data example:
Hamilton NGS STAR 96 and deck layout
This method has been tested and validated using the Hamilton NGS STAR 96 (with Multi-Probe Head 96), Hamilton Ambion magnet adapter, Hamilton MTP landscape carrier and Hamilton On-Deck Thermal Cycler (ODTC).
Deck layout
The deck layout has been updated from the standard layout. Please see the "Prepare the deck" step of this protocol for more details.
Data tracking
For data tracking purposes, we have included the option to add user ID before starting any process. This can be filled using any method the user prefers.
We recommend using barcode stickers to track the input and output plates for data tracking. These can be tracked on the workfile and entered on the UI alongside the reagent lot barcodes when prompted.
Convenient reagent kits are available on request from NEB for the Multiplex Ligation Sequencing Kit XL.
This will contain the appropriate NEB reagents and the required volumes for the protocol on the Hamilton NGS STAR 96. For more information from NEB, please see "Find Products for Nanopore Sequencing".
Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL) contents
Name | Acronym | Cap colour | Number of vials | Fill volume per vial (µl) |
---|---|---|---|---|
Adapter Mix II T | AMII T | Green | 1 | 320 |
Sequencing Buffer II | SBII | Red | 4 | 1,500 |
Loading Beads II | LBII | Pink | 4 | 1,500 |
Loading Solution | LS | White cap, pink sticker | 4 | 1,500 |
EDTA | EDTA | Clear | 1 | 700 |
Elution Buffer | EB | 15 ml bottle | 1 | 10,000 |
Long Fragment Buffer | LFB | 30 ml bottle | 1 | 20,000 |
Flush Buffer XL | FB | 30 ml bottle | 6 | 15,500 |
Flush Tether | FLT | White cap, purple sticker | 2 | 1,600 |
Native Barcodes | NB01-96 | N/a | 1 plate | 8 µl per well |
Consumables and equipment quantities:
Consumables | No. of consumables for all conditions |
---|---|
Hamilton 50 µl CO-RE tips with filter | 960 |
Hamilton 300 µl CO-RE tips with filter | 960 |
Hamilton 1000 µ CO-RE tips with filter | 96 |
Bio-Rad Hard-Shell® 96-well PCR Plate | 8 |
This protocol requires the tip decks to be completely filled before starting a run. Partially filled tip decks will cause an error with the liquid handling robot.
We recommend using Hamilton tips for efficient liquid handling.
Reagent quantities:
Note: Volumes for x48 samples will be available soon.
Full method
Reagents | x96 samples |
---|---|
80% ethanol | 80 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
Long Fragment Buffer (LFB) | 2 bottles |
Elution Buffer (EB) | 1 bottle |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
Adapter Mix F (AMII F) | 1 vial |
NEBNext FFRE DNA Repair Buffer | 130 µl |
NEBNext FFPE DNA Repair Mix | 90 µl |
Ultra II End Prep Reaction Buffer | 130 µl |
Ultra II End Prep Enzyme Mix | 120 µl |
Blunt/TA Ligase Master Mix | 1210 µl |
NEBNext Quick Ligation Reaction Buffer (5x) | 590 µl |
Quick T4 DNA Ligase | 310 µl |
__Multiple steps combined:__ ### End Repair and Adenylation step to Native Barcode Ligation step
Reagents | x96 samples |
---|---|
80% ethanol | 80 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
NEBNext FFRE DNA Repair Buffer | 130 µl |
NEBNext FFPE DNA Repair Mix | 90 µl |
Ultra II End Prep Reaction Buffer | 130 µl |
Ultra II End Prep Enzyme Mix | 120 µl |
Blunt/TA Ligase Master Mix | 1210 µl |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
### Native Barcode Ligation step to Adapter Ligation step
Reagents | x96 samples |
---|---|
80% ethanol | 40 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
Long Fragment Buffer (LFB) | 2 bottles |
Elution Buffer (EB) | 1 bottle |
Blunt/TA Ligase Master Mix | 1210 µl |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
Adapter Mix F (AMII F) | 1 vial |
NEBNext Quick Ligation Reaction Buffer (5x) | 590 µl |
Quick T4 DNA Ligase | 310 µl |
__Individual steps:__ #### End Repair step
Reagents | x96 samples |
---|---|
80% ethanol | 40 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
NEBNext FFRE DNA Repair Buffer | 130 µl |
NEBNext FFPE DNA Repair Mix | 90 µl |
Ultra II End Prep Reaction Buffer | 130 µl |
Ultra II End Prep Enzyme Mix | 120 µl |
### Native Barcode Ligation step
Reagents | x96 samples |
---|---|
80% ethanol | 40 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
Blunt/TA Ligase Master Mix | 1210 µl |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
#### Adapter Ligation step
Reagents | x96 samples |
---|---|
AMPure XP Beads | 15 ml |
Long Fragment Buffer (LFB) | 2 bottles |
Elution Buffer (EB) | 1 bottle |
NEBNext Quick Ligation Reaction Buffer (5x) | 590 µl |
Quick T4 DNA Ligase | 310 µl |
Native barcode sequences
Component | Forward sequence | Reverse sequence |
---|---|---|
NB01 | CACAAAGACACCGACAACTTTCTT | AAGAAAGTTGTCGGTGTCTTTGTG |
NB02 | ACAGACGACTACAAACGGAATCGA | TCGATTCCGTTTGTAGTCGTCTGT |
NB03 | CCTGGTAACTGGGACACAAGACTC | GAGTCTTGTGTCCCAGTTACCAGG |
NB04 | TAGGGAAACACGATAGAATCCGAA | TTCGGATTCTATCGTGTTTCCCTA |
NB05 | AAGGTTACACAAACCCTGGACAAG | CTTGTCCAGGGTTTGTGTAACCTT |
NB06 | GACTACTTTCTGCCTTTGCGAGAA | TTCTCGCAAAGGCAGAAAGTAGTC |
NB07 | AAGGATTCATTCCCACGGTAACAC | GTGTTACCGTGGGAATGAATCCTT |
NB08 | ACGTAACTTGGTTTGTTCCCTGAA | TTCAGGGAACAAACCAAGTTACGT |
NB09 | AACCAAGACTCGCTGTGCCTAGTT | AACTAGGCACAGCGAGTCTTGGTT |
NB10 | GAGAGGACAAAGGTTTCAACGCTT | AAGCGTTGAAACCTTTGTCCTCTC |
NB11 | TCCATTCCCTCCGATAGATGAAAC | GTTTCATCTATCGGAGGGAATGGA |
NB12 | TCCGATTCTGCTTCTTTCTACCTG | CAGGTAGAAAGAAGCAGAATCGGA |
NB13 | AGAACGACTTCCATACTCGTGTGA | TCACACGAGTATGGAAGTCGTTCT |
NB14 | AACGAGTCTCTTGGGACCCATAGA | TCTATGGGTCCCAAGAGACTCGTT |
NB15 | AGGTCTACCTCGCTAACACCACTG | CAGTGGTGTTAGCGAGGTAGACCT |
NB16 | CGTCAACTGACAGTGGTTCGTACT | AGTACGAACCACTGTCAGTTGACG |
NB17 | ACCCTCCAGGAAAGTACCTCTGAT | ATCAGAGGTACTTTCCTGGAGGGT |
NB18 | CCAAACCCAACAACCTAGATAGGC | GCCTATCTAGGTTGTTGGGTTTGG |
NB19 | GTTCCTCGTGCAGTGTCAAGAGAT | ATCTCTTGACACTGCACGAGGAAC |
NB20 | TTGCGTCCTGTTACGAGAACTCAT | ATGAGTTCTCGTAACAGGACGCAA |
NB21 | GAGCCTCTCATTGTCCGTTCTCTA | TAGAGAACGGACAATGAGAGGCTC |
NB22 | ACCACTGCCATGTATCAAAGTACG | CGTACTTTGATACATGGCAGTGGT |
NB23 | CTTACTACCCAGTGAACCTCCTCG | CGAGGAGGTTCACTGGGTAGTAAG |
NB24 | GCATAGTTCTGCATGATGGGTTAG | CTAACCCATCATGCAGAACTATGC |
NB25 | GTAAGTTGGGTATGCAACGCAATG | CATTGCGTTGCATACCCAACTTAC |
NB26 | CATACAGCGACTACGCATTCTCAT | ATGAGAATGCGTAGTCGCTGTATG |
NB27 | CGACGGTTAGATTCACCTCTTACA | TGTAAGAGGTGAATCTAACCGTCG |
NB28 | TGAAACCTAAGAAGGCACCGTATC | GATACGGTGCCTTCTTAGGTTTCA |
NB29 | CTAGACACCTTGGGTTGACAGACC | GGTCTGTCAACCCAAGGTGTCTAG |
NB30 | TCAGTGAGGATCTACTTCGACCCA | TGGGTCGAAGTAGATCCTCACTGA |
NB31 | TGCGTACAGCAATCAGTTACATTG | CAATGTAACTGATTGCTGTACGCA |
NB32 | CCAGTAGAAGTCCGACAACGTCAT | ATGACGTTGTCGGACTTCTACTGG |
NB33 | CAGACTTGGTACGGTTGGGTAACT | AGTTACCCAACCGTACCAAGTCTG |
NB34 | GGACGAAGAACTCAAGTCAAAGGC | GCCTTTGACTTGAGTTCTTCGTCC |
NB35 | CTACTTACGAAGCTGAGGGACTGC | GCAGTCCCTCAGCTTCGTAAGTAG |
NB36 | ATGTCCCAGTTAGAGGAGGAAACA | TGTTTCCTCCTCTAACTGGGACAT |
NB37 | GCTTGCGATTGATGCTTAGTATCA | TGATACTAAGCATCAATCGCAAGC |
NB38 | ACCACAGGAGGACGATACAGAGAA | TTCTCTGTATCGTCCTCCTGTGGT |
NB39 | CCACAGTGTCAACTAGAGCCTCTC | GAGAGGCTCTAGTTGACACTGTGG |
NB40 | TAGTTTGGATGACCAAGGATAGCC | GGCTATCCTTGGTCATCCAAACTA |
NB41 | GGAGTTCGTCCAGAGAAGTACACG | CGTGTACTTCTCTGGACGAACTCC |
NB42 | CTACGTGTAAGGCATACCTGCCAG | CTGGCAGGTATGCCTTACACGTAG |
NB43 | CTTTCGTTGTTGACTCGACGGTAG | CTACCGTCGAGTCAACAACGAAAG |
NB44 | AGTAGAAAGGGTTCCTTCCCACTC | GAGTGGGAAGGAACCCTTTCTACT |
NB45 | GATCCAACAGAGATGCCTTCAGTG | CACTGAAGGCATCTCTGTTGGATC |
NB46 | GCTGTGTTCCACTTCATTCTCCTG | CAGGAGAATGAAGTGGAACACAGC |
NB47 | GTGCAACTTTCCCACAGGTAGTTC | GAACTACCTGTGGGAAAGTTGCAC |
NB48 | CATCTGGAACGTGGTACACCTGTA | TACAGGTGTACCACGTTCCAGATG |
NB49 | ACTGGTGCAGCTTTGAACATCTAG | CTAGATGTTCAAAGCTGCACCAGT |
NB50 | ATGGACTTTGGTAACTTCCTGCGT | ACGCAGGAAGTTACCAAAGTCCAT |
NB51 | GTTGAATGAGCCTACTGGGTCCTC | GAGGACCCAGTAGGCTCATTCAAC |
NB52 | TGAGAGACAAGATTGTTCGTGGAC | GTCCACGAACAATCTTGTCTCTCA |
NB53 | AGATTCAGACCGTCTCATGCAAAG | CTTTGCATGAGACGGTCTGAATCT |
NB54 | CAAGAGCTTTGACTAAGGAGCATG | CATGCTCCTTAGTCAAAGCTCTTG |
NB55 | TGGAAGATGAGACCCTGATCTACG | CGTAGATCAGGGTCTCATCTTCCA |
NB56 | TCACTACTCAACAGGTGGCATGAA | TTCATGCCACCTGTTGAGTAGTGA |
NB57 | GCTAGGTCAATCTCCTTCGGAAGT | ACTTCCGAAGGAGATTGACCTAGC |
NB58 | CAGGTTACTCCTCCGTGAGTCTGA | TCAGACTCACGGAGGAGTAACCTG |
NB59 | TCAATCAAGAAGGGAAAGCAAGGT | ACCTTGCTTTCCCTTCTTGATTGA |
NB60 | CATGTTCAACCAAGGCTTCTATGG | CCATAGAAGCCTTGGTTGAACATG |
NB61 | AGAGGGTACTATGTGCCTCAGCAC | GTGCTGAGGCACATAGTACCCTCT |
NB62 | CACCCACACTTACTTCAGGACGTA | TACGTCCTGAAGTAAGTGTGGGTG |
NB63 | TTCTGAAGTTCCTGGGTCTTGAAC | GTTCAAGACCCAGGAACTTCAGAA |
NB64 | GACAGACACCGTTCATCGACTTTC | GAAAGTCGATGAACGGTGTCTGTC |
NB65 | TTCTCAGTCTTCCTCCAGACAAGG | CCTTGTCTGGAGGAAGACTGAGAA |
NB66 | CCGATCCTTGTGGCTTCTAACTTC | GAAGTTAGAAGCCACAAGGATCGG |
NB67 | GTTTGTCATACTCGTGTGCTCACC | GGTGAGCACACGAGTATGACAAAC |
NB68 | GAATCTAAGCAAACACGAAGGTGG | CCACCTTCGTGTTTGCTTAGATTC |
NB69 | TACAGTCCGAGCCTCATGTGATCT | AGATCACATGAGGCTCGGACTGTA |
NB70 | ACCGAGATCCTACGAATGGAGTGT | ACACTCCATTCGTAGGATCTCGGT |
NB71 | CCTGGGAGCATCAGGTAGTAACAG | CTGTTACTACCTGATGCTCCCAGG |
NB72 | TAGCTGACTGTCTTCCATACCGAC | GTCGGTATGGAAGACAGTCAGCTA |
NB73 | AAGAAACAGGATGACAGAACCCTC | GAGGGTTCTGTCATCCTGTTTCTT |
NB74 | TACAAGCATCCCAACACTTCCACT | AGTGGAAGTGTTGGGATGCTTGTA |
NB75 | GACCATTGTGATGAACCCTGTTGT | ACAACAGGGTTCATCACAATGGTC |
NB76 | ATGCTTGTTACATCAACCCTGGAC | GTCCAGGGTTGATGTAACAAGCAT |
NB77 | CGACCTGTTTCTCAGGGATACAAC | GTTGTATCCCTGAGAAACAGGTCG |
NB78 | AACAACCGAACCTTTGAATCAGAA | TTCTGATTCAAAGGTTCGGTTGTT |
NB79 | TCTCGGAGATAGTTCTCACTGCTG | CAGCAGTGAGAACTATCTCCGAGA |
NB80 | CGGATGAACATAGGATAGCGATTC | GAATCGCTATCCTATGTTCATCCG |
NB81 | CCTCATCTTGTGAAGTTGTTTCGG | CCGAAACAACTTCACAAGATGAGG |
NB82 | ACGGTATGTCGAGTTCCAGGACTA | TAGTCCTGGAACTCGACATACCGT |
NB83 | TGGCTTGATCTAGGTAAGGTCGAA | TTCGACCTTACCTAGATCAAGCCA |
NB84 | GTAGTGGACCTAGAACCTGTGCCA | TGGCACAGGTTCTAGGTCCACTAC |
NB85 | AACGGAGGAGTTAGTTGGATGATC | GATCATCCAACTAACTCCTCCGTT |
NB86 | AGGTGATCCCAACAAGCGTAAGTA | TACTTACGCTTGTTGGGATCACCT |
NB87 | TACATGCTCCTGTTGTTAGGGAGG | CCTCCCTAACAACAGGAGCATGTA |
NB88 | TCTTCTACTACCGATCCGAAGCAG | CTGCTTCGGATCGGTAGTAGAAGA |
NB89 | ACAGCATCAATGTTTGGCTAGTTG | CAACTAGCCAAACATTGATGCTGT |
NB90 | GATGTAGAGGGTACGGTTTGAGGC | GCCTCAAACCGTACCCTCTACATC |
NB91 | GGCTCCATAGGAACTCACGCTACT | AGTAGCGTGAGTTCCTATGGAGCC |
NB92 | TTGTGAGTGGAAAGATACAGGACC | GGTCCTGTATCTTTCCACTCACAA |
NB93 | AGTTTCCATCACTTCAGACTTGGG | CCCAAGTCTGAAGTGATGGAAACT |
NB94 | GATTGTCCTCAAACTGCCACCTAC | GTAGGTGGCAGTTTGAGGACAATC |
NB95 | CCTGTCTGGAAGAAGAATGGACTT | AAGTCCATTCTTCTTCCAGACAGG |
NB96 | CTGAACGGTCATAGAGTCCACCAT | ATGGTGGACTCTATGACCGTTCAG |
3. Computer requirements and software
PromethION 24/48 IT requirements
The PromethION device contains all the hardware required to control up to 24 (for the P24 model) or 48 (for the P48 model) sequencing experiments and acquire the data. The device is further enhanced with high performance GPU technology for real-time basecalling. Read more in the PromethION IT requirements document.
PromethION 2 Solo IT requirements
The PromethION 2 (P2) Solo is a device which directly connects into a GridION Mk1 or a stand-alone computer that meets the miminum specifications for real-time data streaming and analysis. Up to two PromethION flow cells can be can be run and each is independently addressable, meaning experiments can be run concurrently or individually. For information on the computer IT requirements, please see the PromethION 2 Solo IT requirements document.
Software for nanopore sequencing
MinKNOW
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
EPI2ME (optional)
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.
Verificar la celda de flujo
Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.
Celda de flujo | Número mínimo de poros activos cubierto por la garantía |
---|---|
Flongle | 50 |
MinION/GridION | 800 |
PromethION | 5000 |
4. Prepare the deck
Consumibles
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
- Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
- Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
- Hamilton PCR ComfortLid (Cat# 814300)
- Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)
- Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)
Instrumental
- Hamilton NGS STAR 96 (NGS STAR with Multi-Probe Head 96)
- Hamilton Ambion magnet adapter (cat# 10107866)
- Hamilton MTP landscape carrier (cat# 182365)
- Hamilton On-Deck Thermal Cycler (ODTC)
IMPORTANTE
Extra equipment required for the deck layout
- Hamilton MTP landscape carrier (cat # 182365)
- Hamilton Ambion magnet adapter (cat # 10107866)
Deck layout change
The deck layout has been updated from the standard NGS STAR 96 layout to improve the efficiency of the robot completing the protocol.
The changes will take approximately 3 minutes.
Final deck layout:
Remove the plate stacker and two tube racks.
Plate stacker
Two tube racks
Place both tubes racks in positions 1 and 2.
Positions 1 and 2 are indicated by the arrow below:
Shift the four tip carriers to the left, starting from position 3.
Place the two trough carriers next to the 300 µl tips and insert the new carrier in the remaining slot on deck.
Place the Ambion magnet adapter on the Ambion magnet.
FIN DEL PROCESO
Once the deck is correctly set up, the robot can be prepared to run the automation protocol.
5. Pre-processes
Material
- 1200 ng gDNA per sample
- Long Fragment Buffer (LFB) (tampón para fragmentos largos)
Consumibles
- Etanol al 80 % recién preparado con agua sin nucleasas
- Nuclease-free water (e.g. ThermoFisher, cat #AM9937)
- Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
- Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
- Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
- Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)
Users have the option to use pre-process to complete automated upstream methods to prepare their samples.
Click "Pre-processes" to open the following dialogue and select the method you would like to complete and click "Ok".
Enter the number of samples to process and click "Ok".
Enter the input volume of your samples to process and click "Ok".
Dialogue boxes will follow on the UI to illustrate how to correctly load the deck.
FIN DEL PROCESO
Once the process is complete, you will be returned to the method selection page, enabling the user to either start the library preparation process or another pre-process.
6. Complete automated library preparation
Material
- 1200 ng gDNA per sample
- Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
Consumibles
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- NEBNext® Quick Ligation Reaction Buffer (NEB, B6058)
- NEBNext FFPE Repair Mix (NEB M6630) (mezcla de reparación de ADN)
- NEBNext® Ultra™ II End Repair/dA-Tailing Module (E7546)
- NEBNext Quick Ligation Module (NEB E6056) (Módulo de ligación rápida)
- Nuclease-free water (e.g. ThermoFisher, cat #AM9937)
- Etanol al 80 % recién preparado con agua sin nucleasas
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
- Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
- Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
- Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
- Hamilton PCR ComfortLid (Cat# 814300)
- Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)
- Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)
Instrumental
- Pipeta y puntas P100
- Qubit fluorometer (or equivalent)
- Ice bucket with ice
Consumables and equipment quantities:
Consumables | No. of consumables for all conditions |
---|---|
Hamilton 50 µl CO-RE tips with filter | 960 |
Hamilton 300 µl CO-RE tips with filter | 960 |
Hamilton 1000 µ CO-RE tips with filter | 96 |
Bio-Rad Hard-Shell® 96-well PCR Plate | 8 |
Note: We recommend using Hamilton tips for efficient liquid handling.
IMPORTANTE
It is required to use full decks of tips to run this protocol for all conditions. Partially used tip decks will cause an error with the liquid handling robot.
Reagent quantities:
Full method
Reagents | x96 samples |
---|---|
80% ethanol | 80 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
Long Fragment Buffer (LFB) | 2 bottles |
Elution Buffer (EB) | 1 bottle |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
Adapter Mix F (AMII F) | 1 vial |
NEBNext FFRE DNA Repair Buffer | 130 µl |
NEBNext FFPE DNA Repair Mix | 90 µl |
Ultra II End Prep Reaction Buffer | 130 µl |
Ultra II End Prep Enzyme Mix | 120 µl |
Blunt/TA Ligase Master Mix | 1210 µl |
NEBNext Quick Ligation Reaction Buffer (5x) | 590 µl |
Quick T4 DNA Ligase | 310 µl |
Prepare the reagents as follows and store on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down |
---|---|---|
NEBNext FFPE DNA Repair Buffer | ✓ | - |
NEBNext FFPE DNA Repair Mix | ✓ | Note: Do no vortex |
NEBNext Ultra II End-prep repair buffer | ✓ | - |
NEBNext Ultra II End-prep enzyme mix | ✓ | Note: Do not vortex |
NEBNext Quick Ligation Reaction Buffer (5x) | ✓ | - |
NEBNext Quick T4 DNA Ligase | ✓ | Note: Do not vortex |
Native barcode plate | ✓ | ✓ |
Elution Buffer (EB) | ✓ | - |
Adapter Mix II F (AMII-F) | ✓ | ✓ |
Long Fragment Buffer (LFB) | ✓ | - |
IMPORTANTE
Do not vortex the NEBNext FFPE DNA Repair Mix, NEBNext Ultra II End Prep Enzyme Mix or NEBNext Quick T4 DNA Ligase.
In a clean hard shell PCR plate, prepare the sample input plate as follows:
- Dispense 1200 ng DNA into each sample well. Note: We suggest aliquoting your DNA at 80 ng/µl per sample.
- Make up the volume of each well containing DNA samples to at least 15 µl.
Switch on the Hamilton NGS STAR 96 robot and open the method from the desktop shortcut.
When the method is loaded, click 'Start'.
To find further information, click 'About MLK111.96-XL' to view the automation section of the Community in the default web browser.
Click 'MLK111.96-XL' to proceed to the method parameter selection.
MEDIDA OPCIONAL
Before starting, a user ID can be entered for traceability purposes.
Note: Any format of user ID can be used.
Choose the number of samples to process from the drop-down menu, your multiplexing method and the file directory to the input workfile. Click 'Ok' to continue.
Current multiplexing options include either:
- 2 samples on 1 flow cell
- 3 samples on 2 flow cells
__Note:__ When completing the full method, only 96 or 48 samples are available as options.
IMPORTANTE
An error message will appear if an invalid number of samples is selected for your choosen multiplexing method.
Enter the barcode of the input plate containing the samples and the output plate which will contain the prepared DNA libraries.
IMPORTANTE
If the entered barcodes do not match what is stored in the workfile, the correct barcodes will need to be re-entered.
MEDIDA OPCIONAL
Select where to start on a previously used native barcode plate when using 48 or fewer samples.
Click "Full method" to run the entire automated protocol.
Note: We recommend using the "Select steps" option if sample quantification is required after each step. Please see the "Select steps in the automated library preparation" step.
MEDIDA OPCIONAL
For traceability purposes, the lot barcodes of the reagents can be entered for the Oxford Nanopore Technologies (ONT) reagents, the native barcode plate (NBD) and the NEB reagents used.
Once settings for the run have been selected, there will be a series of dialogues illustrating how to load the deck depending on steps selected.
Note: The following screenshots are an example of performing the full method for x96 samples.
IMPORTANTE
Ensure all seals are removed from plates before loading the deck.
Place the Hamilton Comfort PCR lid on the PCR lid position.
IMPORTANTE
Ensure the tip decks are full before running the protocol.
Load 50 µl tips as indicated on screen.
Load 300 µl tips as indicated on screen.
Mix by inverting and prepare the following reagents in troughs:
For X96 samples:
Reagent | Volume per trough | No. of troughs | Total volume |
---|---|---|---|
Freshly prepared 80% ethanol | 40 ml | 2 | 80 ml |
Agencourt AMPure XP beads | 15 ml | 1 | 15 ml |
Nuclease-free water | 10 ml | 1 | 10 ml |
Long Fragment Buffer (LFB) | 2 bottles | 1 | 2 bottles |
Elution Buffer (EB) | 1 bottle | 1 | 1 bottle |
IMPORTANTE
Ensure to use the correct volume of AMPure XP beads and they are well mixed before use by vortexing.
Adding a larger volume of AMPure XP beads may be detrimental to the run because the robot is programmed to mix a defined volume which may not sufficiently mix if a significantly higher volume than recommended is used.
Load the reagent troughs as indicated on screen.
Ensure the foil seal is removed from the native barcode plate foil seal.
Load the native barcode plate, 3 fresh PCR plates and the input plate containing the DNA samples.
Load 1000 µl tips as indicated on screen and ensure the magnet is in place with the adapter for PCR plates.
Load the CPAC module as indicated on screen with the reagent tubes before loading on deck.
1 | 2 | 3 | 4 | |
---|---|---|---|---|
A | FFPE DNA Repair Buffer | Empty 1.5 ml Eppendorf LoBind tube | Blunt/TA Ligase Master Mix | AMII-F |
B | FFPE DNA Repair Mix | - | EDTA | Quick Ligation Reaction Buffer |
C | Ultra II End-prep Buffer | - | - | Quick T4 DNA Ligase |
D | Ultra II End-prep Enzyme Mix | - | - | Empty 1.5 ml Eppendorf LoBind tube |
Volumes required:
Reagent | x96 samples 3 samples across 2 flow cells | x96 samples 2 samples per flow cell | x48 samples 3 samples across 2 flow cells | x48 samples 2 samples per flow cell |
---|---|---|---|---|
NEBNext FFPE DNA Repair buffer | 130 µl | 130 µl | 72.45 µl | 72.45 µl |
NEBNext FFPE DNA Repair Enzyme Mix | 90 µl | 90 µl | 41.4 µl | 41.4 µl |
Ultra II End Prep Reaction Buffer | 130 µl | 130 µl | 72.45 µl | 72.45 µl |
Ultra II End Prep Enzyme Mix | 120 µl | 120 µl | 62.1 µl | 62.1 µl |
Blunt/TA Ligase Master Mix | 1210 µl | 1210 µl | 738 µl | 738 µl |
AMII T | 270.4 µl | 310 µl | 138 µl | 202.8 µl |
NEBNext Quick Ligation Reaction Buffer (5x) | 540.8 µl | 590 µl | 276 µl | 405.6 µl |
Quick T4 DNA Ligase | 270.4 µl | 310 µl | 138 µl | 202.8 µl |
Once the deck is correctly loaded, click 'Begin method' to start with the parameters selected before loading.
During the thermal cycle step for Step 1: End repair and adenylation thermal cycling reaction, the user will be prompted to remove the input plate with the input samples and to load 3 fresh PCR plates as indicated on screen.
This dialogue will prompt the user to remove their input plate:
MEDIDA OPCIONAL
Quantify 1 µl of eluted sample using a Qubit fluorometer.
IMPORTANTE
We recommend loading >10 fmols of this final prepared library onto the flow cell for R9.4.1 flow cells.
FIN DEL PROCESO
La biblioteca preparada se usará para cargar la celda de flujo. Conservar la biblioteca en hielo o a 4 °C hasta el momento de cargar.
CONSEJO
Recomendaciones de guardado de la biblioteca
Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.
MEDIDA OPCIONAL
If quantities allow, the libraries may be diluted in Elution Buffer (EB) for splittling across multiple flow cells.
7. Select steps in the automated library preparation
Material
- 1200 ng gDNA per sample
- Multiplex Ligation Sequencing Kit XL (SQK-MLK111.96-XL)
Consumibles
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- NEBNext® Quick Ligation Reaction Buffer (NEB, B6058)
- NEBNext FFPE Repair Mix (NEB M6630) (mezcla de reparación de ADN)
- NEBNext® Ultra™ II End Repair/dA-Tailing Module (E7546)
- NEBNext Quick Ligation Module (NEB E6056) (Módulo de ligación rápida)
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- Etanol al 80 % recién preparado con agua sin nucleasas
- 1.5 ml Eppendorf DNA LoBind tubes
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
- Hamilton 50 µl CO-RE tips with filter (Cat# 235948)
- Hamilton 300 µl CO-RE tips with filter (Cat# 235903)
- Hamilton 1000 µl CO-RE tips with filter (Cat# 235905)
- Hamilton PCR ComfortLid (Cat# 814300)
- Hamilton 60 ml Reagent Reservoir, Self-Standing with Lid (Cat# 56694-01)
- Bio-Rad Hard-Shell® 96-Well PCR Plates (Cat# HSP9601)
Instrumental
- Pipeta y puntas P100
- Qubit fluorometer (or equivalent)
- Ice bucket with ice
Users have the option to run select steps in the protocol. We recommend quantification after End Repair for barcode balancing.
Consumables and equipment quantities:
Consumables | No. of consumables for all conditions |
---|---|
Hamilton 50 µl CO-RE tips with filter | 960 |
Hamilton 300 µl CO-RE tips with filter | 960 |
Hamilton 1000 µ CO-RE tips with filter | 96 |
Bio-Rad Hard-Shell® 96-well PCR Plate | 8 |
Note: We recommend using Hamilton tips for efficient liquid handling.
IMPORTANTE
It is required to use full decks of tips to run this protocol for all conditions. Partially used tip decks will cause an error with the liquid handling robot.
Reagent quantities:
Note: Volumes for x48 samples will be available soon.
Multiple steps:
End Repair and Adenylation step to Native Barcode Ligation step
Reagents | x96 samples |
---|---|
80% ethanol | 80 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
NEBNext FFRE DNA Repair Buffer | 130 µl |
NEBNext FFPE DNA Repair Mix | 90 µl |
Ultra II End Prep Reaction Buffer | 130 µl |
Ultra II End Prep Enzyme Mix | 120 µl |
Blunt/TA Ligase Master Mix | 1210 µl |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
### Native Barcode Ligation step to Adapter Ligation step
Reagents | x96 samples |
---|---|
80% ethanol | 40 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
Long Fragment Buffer (LFB) | 2 bottles |
Elution Buffer (EB) | 1 bottle |
Blunt/TA Ligase Master Mix | 1210 µl |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
Adapter Mix F (AMII F) | 1 vial |
NEBNext Quick Ligation Reaction Buffer (5x) | 590 µl |
Quick T4 DNA Ligase | 310 µl |
__Individual steps:__ ### End Repair step
Reagents | x96 samples |
---|---|
80% ethanol | 40 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
NEBNext FFRE DNA Repair Buffer | 130 µl |
NEBNext FFPE DNA Repair Mix | 90 µl |
Ultra II End Prep Reaction Buffer | 130 µl |
Ultra II End Prep Enzyme Mix | 120 µl |
### Native Barcode Ligation step
Reagents | x96 samples |
---|---|
80% ethanol | 40 ml |
AMPure XP Beads | 15 ml |
Nuclease-free water | 10 ml |
Blunt/TA Ligase Master Mix | 1210 µl |
EDTA | 1 vial |
Native Barcode plate | 1 plate |
### Adapter Ligation step
Reagents | x96 samples |
---|---|
AMPure XP Beads | 15 ml |
Long Fragment Buffer (LFB) | 2 bottles |
Elution Buffer (EB) | 1 bottle |
NEBNext Quick Ligation Reaction Buffer (5x) | 590 µl |
Quick T4 DNA Ligase | 310 µl |
Prepare the reagents as follows and store on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down |
---|---|---|
NEBNext FFPE DNA Repair Buffer | ✓ | - |
NEBNext FFPE DNA Repair Mix | ✓ | Note: Do no vortex |
NEBNext Ultra II End-prep repair buffer | ✓ | - |
NEBNext Ultra II End-prep enzyme mix | ✓ | Note: Do not vortex |
NEBNext Quick Ligation Reaction Buffer (5x) | ✓ | - |
NEBNext Quick T4 DNA Ligase | ✓ | Note: Do not vortex |
Native barcode plate | ✓ | ✓ |
Elution Buffer (EB) | ✓ | - |
Adapter Mix II F (AMII-F) | ✓ | ✓ |
Long Fragment Buffer (LFB) | ✓ | - |
IMPORTANTE
Do not vortex the NEBNext FFPE DNA Repair Mix, NEBNext Ultra II End Prep Enzyme Mix or NEBNext Quick T4 DNA Ligase.
In a clean hard shell PCR plate, prepare the sample input plate as follows:
- Dispense 1200 ng DNA into each sample well. Note: We suggest aliquoting your DNA at 80 ng/µl per sample.
- Make up the volume of each well containing DNA samples to at least 15 µl.
Switch on the Hamilton NGS STAR 96 robot and open the method from the desktop shortcut.
When the method is loaded, click 'Start'.
To find further information, click 'About MLK111.96-XL' to view the automation section of the Community in the default web browser.
Click 'MLK111.96-XL' to proceed to the method parameter selection.
MEDIDA OPCIONAL
Before starting, a user ID can be entered for traceability purposes.
Note: Any format of user ID can be used.
Choose the number of samples to process from the drop-down menu, your multiplexing method and the file directory to the input workfile. Click 'Ok' to continue.
Current multiplexing options include either:
- 2 samples on 1 flow cell
- 3 samples on 2 flow cells
__Note:__ When the method is carried out using selected steps, there will be more sample number options for the "Adapter Ligation" step as this is after pooling.
IMPORTANTE
An error message will appear if an invalid number of samples is selected for your choosen multiplexing method.
Enter the barcode of the input plate containing the samples and the output plate which will contain the prepared DNA libraries.
IMPORTANTE
If the entered barcodes do not match what is stored in the workfile, the correct barcodes will need to be re-entered.
MEDIDA OPCIONAL
Select where to start on a previously used native barcode plate when using 48 or fewer samples.
Click "Select steps" and click "Ok".
Choose a specific starting point from the drop-down menu on the protocol step selection dialogue.
To perform a singular step, check "Perform only selected step" and click "Ok".
To perform multiple steps, leave the check box unselected and click "Ok".
Users will only be able to select a step that canonically comes after the first step selected.
Once settings and the steps for the run have been selected, there will be a series of dialogues illustrating how to load the deck depending on the steps selected.
For an example of the dialogues illustrating how to load the deck, please see the "Complete automated library preparation" step.
FIN DEL PROCESO
The library can be either stored or loaded onto a flow cell once adapter ligation has been completed.
IMPORTANTE
We recommend loading >10 fmols of this final prepared library onto the flow cell for R9.4.1 flow cells.
CONSEJO
Recomendaciones de guardado de la biblioteca
Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.
MEDIDA OPCIONAL
If quantities allow, the libraries may be diluted in Elution Buffer (EB) for splittling across multiple flow cells.
8. Priming and loading multiple flow cells on a PromethION
Material
- Flush Buffer (FB)
- Flush Tether (FLT)
Consumibles
- Celda de flujo PromethION
- 1.5 ml Eppendorf DNA LoBind tubes
- 2 ml Eppendorf DNA LoBind tubes
Instrumental
- PromethION 2 Solo device
- Dispositivo PromethION 24/48
- PromethION Flow Cell Light Shield
- P1000 pipette and tips
- Pipeta y puntas P200
- Pipeta y puntas P20
Thaw the Flush Tether (FLT) and Flush Buffer (FB) at room temperature before mixing the reagents by vortexing and spin down at room temperature.
IMPORTANTE
Scale up reagent volumes as needed.
Ensure to prepare enough reagents for the total number of flow cells being processed and to take into account extra volume required for pipetting errors.
CONSEJO
Each vial provides enough reagent for the preparation of 12 samples. Thaw the appropriate number of vials of each reagent.
Prepare the flow cell priming mix in a suitable vial for the number of flow cells to flush. Once combined, mix well by briefly vortexing.
Reagent | Volume per flow cell |
---|---|
Flush Tether (FLT) | 30 µl |
Flush Buffer (FB) | 1,170 µl |
IMPORTANTE
Una vez sacadas de la nevera, esperar 20 minutos antes de insertar las celdas de flujo en el dispositivo y así darles tiempo a que estén a temperatura ambiente. En entornos húmedos se puede formar condensación. Inspeccione las clavijas doradas del conector, situadas en la parte superior e inferior de la celda de flujo, en busca de condensación y si la hubiera, límpiela con una toallita sin pelusa. Procure que la almohadilla térmica (color gris oscuro) esté enganchada en la parte posterior.
For PromethION 2 Solo, load the flow cell(s) as follows:
Place the flow cell flat on the metal plate.
Slide the flow cell into the docking port until the gold pins or green board cannot be seen.
For the PromethION 24/48, load the flow cell(s) into the docking ports:
- Line up the flow cell with the connector horizontally and vertically before smoothly inserting into position.
- Press down firmly onto the flow cell and ensure the latch engages and clicks into place.
IMPORTANTE
Insertion of the flow cells at the wrong angle can cause damage to the pins on the PromethION and affect your sequencing results. If you find the pins on a PromethION position are damaged, please contact support@nanoporetech.com for assistance.
If not already completed, perform a flow cell check on all flow cells.
Please refer to the Flow Cell Check protocol for further information.
Slide the inlet port cover clockwise to open.
IMPORTANTE
Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.
After opening the inlet port, draw back a small volume to remove any air bubbles:
- Set a P1000 pipette tip to 200 µl.
- Insert the tip into the inlet port.
- Turn the wheel until the dial shows 220-230 µl, or until you see a small volume of buffer entering the pipette tip.
Load 500 µl of the priming mix into the flow cell via the inlet port, avoiding the introduction of air bubbles. Wait five minutes.
Complete the flow cell priming by slowly loading 500 µl of the priming mix into the inlet port.
Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.
Using a P1000, insert the pipette tip into the inlet port and add 150 µl of library.
Close the valve to seal the inlet port.
IMPORTANTE
Para obtener resultados de secuenciación óptimos, coloque la pantalla protectora sobre la celda de flujo justo después de cargar la biblioteca.
Recomendamos colocar la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.
If the light shield has been removed from the flow cell, install the light shield as follows:
- Align the inlet port cut out of the light shield with the inlet port cover on the flow cell. The leading edge of the light shield should sit above the flow cell ID.
- Firmly press the light shield around the inlet port cover. The inlet port clip will click into place underneath the inlet port cover.
FIN DEL PROCESO
Close the PromethION lid when ready to start a sequencing run on MinKNOW.
Wait a minimum of 10 minutes after loading the flow cells onto the PromethION before initiating any experiments. This will help to increase the sequencing output.
For multiple flow cell washing, use the same experiment name and identifying sample IDs for all runs to enable all flow cells to be paused simultaneously.
9. Data acquisition and basecalling
Aspectos generales del análisis de datos de nanoporos
Para obtener una descripción completa del análisis de datos de nanoporos, que incluya distintas posibilidades para el análisis de identificación y postidentificicación de bases, consultar el documento Data Analysis.
Cómo empezar a secuenciar
El programa MinKNOW realiza el control del dispositivo de secuenciación, la adquisición de datos y la identificación de bases en tiempo real. Una vez que el usuario ha instalado MinKNOW en su ordenador, hay diferentes maneras de llevar a cabo la secuenciación:
1. Adquisición de datos e identificación de bases en tiempo real con el programa MinKNOW.
Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run".
2. Adquisición de datos e identificación de bases en tiempo real con el dispositivo GridION.
Seguir las instrucciones del manual de usuario de GridION.
3. Adquisición de datos e identificación de bases en tiempo real con el dispositivo MinION Mk1C.
Seguir las instrucciones del manual de usuario de MinION Mk1C.
4. Adquisición de datos e identificación de bases en tiempo real con el dispositivo PromethION.
Seguir las instrucciones de los manuales de usuario de PromethION o PromethION 2 Solo.
5. Adquisición de datos e identificación de bases posterior mediante MinKNOW.
Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run". Al configurar los parámetros del experimento, ajustar la pestaña Basecalling (Identificación de bases) en posición de APAGADO. Al terminar el experimento de secuenciación, seguir las instrucciones del apartado "Post-run analysis" del protocolo de MinKNOW.
10. Downstream analysis
Post-basecalling analysis
There are several options for further analysing your basecalled data:
1. EPI2ME platform
The EPI2ME platform is a cloud-based data analysis service developed by Metrichor Ltd., a subsidiary of Oxford Nanopore Technologies. The EPI2ME platform offers a range of analysis workflows, e.g. for metagenomic identification, barcoding, alignment, and structural variant calling. The analysis requires no additional equipment or compute power, and provides an easy-to-interpret report with the results. For instructions on how to run an analysis workflow in EPI2ME, please follow the instructions in the EPI2ME protocol, beginning at the "Starting an EPI2ME workflow" step.
2. Bioinformatics tutorials
For more in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials, which are available in the Bioinformatics resource section of the Community. The tutorials take the user through installing and running pre-built analysis pipelines, which generate a report with the results. The tutorials are aimed at biologists who would like to analyse data without the help of a dedicated bioinformatician, and who are comfortable using the command line.
3. Research analysis tools
Oxford Nanopore Technologies' Research division has created a number of analysis tools, which are available in the Oxford Nanopore GitHub repository. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.
4. Community-developed analysis tools
If a data analysis method for your research question is not provided in any of the resources above, please refer to the Community-developed data analysis tool library. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.
11. Reutilización y devolución de celdas de flujo
Material
- Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)
Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a entre 2 °C y 8 ⁰C.
El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.
CONSEJO
Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.
Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.
Aquí puede encontrar las instrucciones para devolver celdas de flujo.
IMPORTANTE
Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.
12. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas
A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.
También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.
Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.
Baja calidad de la muestra
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) | El método de extracción de ADN no proporciona la pureza necesaria | Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes. Considere realizar un paso adicional de limpieza SPRI. |
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). | El ARN se degradó durante la extracción | Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling. |
El ARN tiene una longitud de fragmento más corta de lo esperado | El ARN se degradó durante la extracción | Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling. Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas. |
Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Escasa recuperación | Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. | 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas. 2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza. |
Escasa recuperación | Los fragmentos de ADN son más cortos de lo esperado | Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. |
Escasa recuperación tras la preparación de extremos | El paso de lavado utilizó etanol a <70 % | Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto. |
13. Issues during the sequencing run
A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.
También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.
Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.
Menos poros al inicio de la secuenciación que después de verificar la celda de flujo
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | Se introdujo una burbuja de aire en la matriz de nanoporos | Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra. |
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | La celda de flujo no está colocada correctamente | Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION). |
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros | El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes. |
Error en el script de MinKNOW
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW muestra el mensaje "Error en el script" | Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales. |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
Longitud de lectura más corta de lo esperado
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Longitud de lectura más corta de lo esperado | Fragmentación no deseada de la muestra de ADN | La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca. 1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore. 2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado. 3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente. |
Gran proporción de poros no disponibles
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros) Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles. | Hay contaminantes presentes en la muestra | Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones: 1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004) 2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas. |
Gran proporción de poros inactivos
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) | Se han introducido burbujas de aire en la celda de flujo | Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell |
Gran proporción de poros inactivos/no disponibles | Ciertos compuestos copurificados con ADN | Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas. 1. Consulte la página Plant leaf DNA extraction method. 2. Limpiar usando el kit QIAGEN PowerClean Pro. 3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g. |
Gran proporción de poros inactivos/no disponibles | Hay contaminantes presentes en la muestra | Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes. |
Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación | En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) | Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo. |
Fluctuación de la temperatura
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Fluctuación de la temperatura | La celda de flujo ha perdido contacto con el dispositivo | Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica. |
Error al intentar alcanzar la temperatura deseada
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" | El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). | MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez transcurrido ese tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo, procure que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Encontrará más información sobre el control de temperatura del MinION en este enlace. |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |