Transposable element accumulation drives size differences among polymorphic Y chromosomes in Drosophila

Y chromosomes of many species are gene poor and show low levels of nucleotide variation, yet often display high amounts of structural diversity. Dobzhansky cataloged several morphologically distinct Y chromosomes in Drosophila pseudoobscura that differ in size and shape, but the molecular causes of their dramatic size differences are unclear. Here we use cytogenetics and long-read sequencing to study the sequence content of polymorphic Y chromosomes in D. pseudoobscura.

We show that Y chromosomes differ by almost 2-fold in size, ranging from 30 to 60 Mb. Most of this size difference is caused by a handful of active transposable elements (TEs) that have recently expanded on the largest Y chromosome, with different elements being responsible for Y expansion on differently sized D. pseudoobscura Y’s. We show that Y chromosomes differ in their heterochromatin enrichment, expression of Y-enriched TEs, and also influence expression of dozens of autosomal and X-linked genes.

Intriguingly, the same helitron element that showed the most drastic amplification on the largest Y in D. pseudoobscura independently amplified on a polymorphic large Y chromosome in D. affinis, suggesting that some TEs are inherently more prone to become deregulated on Y chromosomes.

Authors: Alison H. Nguyen, Doris Bachtrog