Rapid sequencing V14 - Plasmid sequencing (SQK-RBK114.24 or SQK-RBK114.96)


概要

  • The fastest and simplest protocol to sequence plasmid DNA
  • For multiplexing up to 96 samples
  • Library preparation time ~60 minutes
  • High yield
  • Fragmentation
  • Compatible with R10.4.1 flow cells

For Research Use Only

Document version: PRB_9188_v114_revH_11Dec2024

1. Overview of the protocol

Rapid Barcoding Kit features

This kit is recommended for users who:

  • Wish to multiplex samples to reduce price per sample
  • Need a PCR-free method of multiplexing to preserve additional information such as base modifications
  • Require a short preparation time
  • Have limited access to laboratory equipment

Introduction to plasmid sequencing using the Rapid Barcoding Kit 24 or 96 V14

This protocol describes how to carry out rapid barcoding of plasmid DNA using the Rapid Barcoding Kit 24 or 96 V14 (SQK-RBK114.24 or SQK-RBK114.96) to sequence up to 96 plasmid samples. This method can be utilised for routine verification of plasmid constructs in molecular biology research, quality control of plasmid DNA samples in biotechnology applications, and analysis of engineered plasmids for gene therapy development. During library preparation, the plasmid DNA is tagmented with the Rapid Barcodes before the samples are pooled and cleaned up. Rapid sequencing adapters are attached to the DNA ends before sequencing on a flow cell.

We recommend new users to sequence for 12 hours, although a shorter run-time may be sufficient. After sequencing, perform downstream analysis using the EPI2ME Labs Clone Validation (wf-clone-validation) workflow. A report is generated with a consensus sequence from each plasmid. Detailed instructions for setting up MinKNOW and the EPI2ME Labs workflow are included.

Steps in the sequencing workflow:


Prepare for your experiment

You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents.
  • Download the software for acquiring and analysing your data.
  • Check your flow cell to ensure it has enough pores for a good sequencing run.

Library preparation

You will need to:

  • Tagment your DNA using the Rapid Barcodes; this simultaneously attaches a pair of barcodes to the fragments.
  • Pool the barcoded samples.
  • Attach the rapid sequencing adapters to the DNA ends.
  • Prime the flow cell, and load your DNA library into the flow cell.

Plasmid RBK114v2

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device into basecalled reads and will perform barcode demultiplexing.
  • Start the EPI2ME software and use the Clone Validation workflow for analysis.
重要

Compatibility of this protocol

This protocol should only be used in combination with:

  • Rapid Barcoding Kit 24 V14 (SQK-RBK114.24)
  • Rapid Barcoding Kit 96 V14 (SQK-RBK114.96)
  • R10.4.1 flow cells (FLO-MIN114)
  • Flow Cell Wash Kit (EXP-WSH004)
  • Flow Cell Priming Kit V14 (EXP-FLP004)
  • Sequencing Auxiliary Vials V14 (EXP-AUX003)
  • Rapid Adapter Auxiliary V14 (EXP-RAA114)

2. Equipment and consumables

材料
  • 50 ng high molecular weight plasmid DNA per sample
  • Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) OR Rapid Barcoding Kit 96 V14 (SQK-RBK114.96)

消耗品
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 2 ml Eppendorf DNA LoBind tubes
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • nuclease-free waterで調整した 80% エタノール溶液
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

装置
  • MinIONかGridION のデバイス
  • アイスバケツ(氷入り)
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • タイマー
  • Thermal cycler or heat blocks
  • マグネットラック
  • Hula mixer(緩やかに回転するミキサー)
  • P1000 ピペット及びチップ
  • P200 ピペットとチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P2 ピペットとチップ
  • Multichannel pipette and tips
  • Qubit蛍光光度計(またはQCチェックのための同等品)
オプション装置
  • Standard gel electrophoresis equipment
  • Agilent Bioanalyzer (or equivalent)

For this protocol, you will need 50 ng high molecular weight plasmid DNA per sample.

インプットDNA

インプットDNAのQC方法

インプットDNAの量と品質の要件を満たすことが重要です。DNAの使用量が少なすぎたり多すぎたり、あるいは品質の低いDNA(例としてDNAが非常に断片化されていたり、RNAや化学汚染物質が含まれている場合など)を使用すると、ライブラリーの調製に影響を及ぼす可能性があります。

DNAサンプルの品質管理の方法については、Input DNA/RNA QC protocolのプロトコルをご覧ください。

コンタミネーション

DNAの抽出する方法によっては、精製DNAに特定の化学汚染物質が残留する可能性があり、ライブラリ調製の効率やシークエンシングの品質に影響を及ぼす可能性があります。コンタミネーションについての詳細は、コミュニティーの Contaminants page をご覧ください。

重要

The Rapid Adapter (RA) used in this kit and protocol is not interchangeable with other sequencing adapters.

Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) contents

We are in the process of reformatting the barcodes provided in this kit into a plate format. This will reduce plastic waste and facilitates automated applications.

Plate format

SQK-RBK114.24 plate format

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Rapid Adapter RA Green 1 15
Adapter Buffer ADB Clear 1 100
AMPure XP Beads AXP Amber 2 1200
Elution Buffer EB Black 1 500
Sequencing Buffer SB Red 1 700
Library Beads LIB Pink 1 600
Library Solution LIS White cap, pink label 1 600
Flow Cell Flush FCF Clear cap, light blue label 1 8000
Flow Cell Tether FCT Purple 1 200
Rapid Barcode plate RB01-24 - 2 plates, 3 sets of barcodes per plate 5 µl per well

This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.


Vial format

RBK114.24 tubes

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Rapid Adapter RA Green 1 15
Adapter Buffer ADB Clear 1 100
AMPure XP Beads AXP Amber 2 1,200
Elution Buffer EB Black 1 500
Sequencing Buffer SB Red 1 700
Library Beads LIB Pink 1 600
Library Solution LIS White cap, pink label 1 600
Flow Cell Flush FCF Blue 6 1,170
Flow Cell Tether FCT Purple 1 200
Rapid Barcodes RB01-24 Clear 24 15

This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.

Rapid Barcoding Kit 96 V14 (SQK-RBK114.96) contents

RBK114.96 tubes (1)

Name Acronym Cap colour No. of vials Fill volume per vial (µl)
Rapid Adapter RA Green 2 15
Adapter Buffer ADB Clear 1 100
AMPure XP Beads AXP Amber 3 1,200
Elution Buffer EB Black 1 1,500
Sequencing Buffer SB Red 1 1,700
Library Beads LIB Pink 1 1,800
Library Solution LIS White cap, pink label 1 1,800
Flow Cell Flush FCF Clear 1 15,500
Flow Cell Tether FCT Purple 2 200
Rapid Barcodes RB01-96 - 3 plates 8 µl per well

This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.

Rapid barcode sequences

Component Sequence
RB01 AAGAAAGTTGTCGGTGTCTTTGTG
RB02 TCGATTCCGTTTGTAGTCGTCTGT
RB03 GAGTCTTGTGTCCCAGTTACCAGG
RB04 TTCGGATTCTATCGTGTTTCCCTA
RB05 CTTGTCCAGGGTTTGTGTAACCTT
RB06 TTCTCGCAAAGGCAGAAAGTAGTC
RB07 GTGTTACCGTGGGAATGAATCCTT
RB08 TTCAGGGAACAAACCAAGTTACGT
RB09 AACTAGGCACAGCGAGTCTTGGTT
RB10 AAGCGTTGAAACCTTTGTCCTCTC
RB11 GTTTCATCTATCGGAGGGAATGGA
RB12 CAGGTAGAAAGAAGCAGAATCGGA
RB13 AGAACGACTTCCATACTCGTGTGA
RB14 AACGAGTCTCTTGGGACCCATAGA
RB15 AGGTCTACCTCGCTAACACCACTG
RB16 CGTCAACTGACAGTGGTTCGTACT
RB17 ACCCTCCAGGAAAGTACCTCTGAT
RB18 CCAAACCCAACAACCTAGATAGGC
RB19 GTTCCTCGTGCAGTGTCAAGAGAT
RB20 TTGCGTCCTGTTACGAGAACTCAT
RB21 GAGCCTCTCATTGTCCGTTCTCTA
RB22 ACCACTGCCATGTATCAAAGTACG
RB23 CTTACTACCCAGTGAACCTCCTCG
RB24 GCATAGTTCTGCATGATGGGTTAG
RB25 GTAAGTTGGGTATGCAACGCAATG
RB26 CATACAGCGACTACGCATTCTCAT
RB27 CGACGGTTAGATTCACCTCTTACA
RB28 TGAAACCTAAGAAGGCACCGTATC
RB29 CTAGACACCTTGGGTTGACAGACC
RB30 TCAGTGAGGATCTACTTCGACCCA
RB31 TGCGTACAGCAATCAGTTACATTG
RB32 CCAGTAGAAGTCCGACAACGTCAT
RB33 CAGACTTGGTACGGTTGGGTAACT
RB34 GGACGAAGAACTCAAGTCAAAGGC
RB35 CTACTTACGAAGCTGAGGGACTGC
RB36 ATGTCCCAGTTAGAGGAGGAAACA
RB37 GCTTGCGATTGATGCTTAGTATCA
RB38 ACCACAGGAGGACGATACAGAGAA
RB39 CCACAGTGTCAACTAGAGCCTCTC
RB40 TAGTTTGGATGACCAAGGATAGCC
RB41 GGAGTTCGTCCAGAGAAGTACACG
RB42 CTACGTGTAAGGCATACCTGCCAG
RB43 CTTTCGTTGTTGACTCGACGGTAG
RB44 AGTAGAAAGGGTTCCTTCCCACTC
RB45 GATCCAACAGAGATGCCTTCAGTG
RB46 GCTGTGTTCCACTTCATTCTCCTG
RB47 GTGCAACTTTCCCACAGGTAGTTC
RB48 CATCTGGAACGTGGTACACCTGTA
RB49 ACTGGTGCAGCTTTGAACATCTAG
RB50 ATGGACTTTGGTAACTTCCTGCGT
RB51 GTTGAATGAGCCTACTGGGTCCTC
RB52 TGAGAGACAAGATTGTTCGTGGAC
RB53 AGATTCAGACCGTCTCATGCAAAG
RB54 CAAGAGCTTTGACTAAGGAGCATG
RB55 TGGAAGATGAGACCCTGATCTACG
RB56 TCACTACTCAACAGGTGGCATGAA
RB57 GCTAGGTCAATCTCCTTCGGAAGT
RB58 CAGGTTACTCCTCCGTGAGTCTGA
RB59 TCAATCAAGAAGGGAAAGCAAGGT
RB60 CATGTTCAACCAAGGCTTCTATGG
RB61 AGAGGGTACTATGTGCCTCAGCAC
RB62 CACCCACACTTACTTCAGGACGTA
RB63 TTCTGAAGTTCCTGGGTCTTGAAC
RB64 GACAGACACCGTTCATCGACTTTC
RB65 TTCTCAGTCTTCCTCCAGACAAGG
RB66 CCGATCCTTGTGGCTTCTAACTTC
RB67 GTTTGTCATACTCGTGTGCTCACC
RB68 GAATCTAAGCAAACACGAAGGTGG
RB69 TACAGTCCGAGCCTCATGTGATCT
RB70 ACCGAGATCCTACGAATGGAGTGT
RB71 CCTGGGAGCATCAGGTAGTAACAG
RB72 TAGCTGACTGTCTTCCATACCGAC
RB73 AAGAAACAGGATGACAGAACCCTC
RB74 TACAAGCATCCCAACACTTCCACT
RB75 GACCATTGTGATGAACCCTGTTGT
RB76 ATGCTTGTTACATCAACCCTGGAC
RB77 CGACCTGTTTCTCAGGGATACAAC
RB78 AACAACCGAACCTTTGAATCAGAA
RB79 TCTCGGAGATAGTTCTCACTGCTG
RB80 CGGATGAACATAGGATAGCGATTC
RB81 CCTCATCTTGTGAAGTTGTTTCGG
RB82 ACGGTATGTCGAGTTCCAGGACTA
RB83 TGGCTTGATCTAGGTAAGGTCGAA
RB84 GTAGTGGACCTAGAACCTGTGCCA
RB85 AACGGAGGAGTTAGTTGGATGATC
RB86 AGGTGATCCCAACAAGCGTAAGTA
RB87 TACATGCTCCTGTTGTTAGGGAGG
RB88 TCTTCTACTACCGATCCGAAGCAG
RB89 ACAGCATCAATGTTTGGCTAGTTG
RB90 GATGTAGAGGGTACGGTTTGAGGC
RB91 GGCTCCATAGGAACTCACGCTACT
RB92 TTGTGAGTGGAAAGATACAGGACC
RB93 AGTTTCCATCACTTCAGACTTGGG
RB94 GATTGTCCTCAAACTGCCACCTAC
RB95 CCTGTCTGGAAGAAGAATGGACTT
RB96 CTGAACGGTCATAGAGTCCACCAT

3. Computer requirements and software

MinION Mk1B IT requirements

Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1B IT requirements document.

MinION Mk1C IT requirements

The MinION Mk1C contains fully-integrated compute and screen, removing the need for any accessories to generate and analyse nanopore data. For more information refer to the MinION Mk1C IT requirements document.

MinION Mk1D IT requirements

Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

EPI2ME

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.

Check your flow cell

We highly recommend that you check the number of pores in your MinION Flow Cell prior to starting a sequencing experiment. This should be done within 12 weeks of purchasing the flow cells. Oxford Nanopore Technologies will replace any flow cell with fewer than the number of pores in the table below, when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.

The minimum number of active pores in a MinION Flow Cell that is covered by warranty is 800 pores.

4. Library preparation

材料
  • 50 ng of high molecular weight plasmid DNA per sample
  • Rapid Barcodes (RB01-24 or RB01-96)
  • Rapid Adapter (RA)
  • Adapter Buffer (ADB)
  • AMPure XP Beads (AXP)
  • Elution Buffer (EB)

消耗品
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 2 ml Eppendorf DNA LoBind tubes
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • nuclease-free waterで調整した 80% エタノール溶液
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

装置
  • アイスバケツ(氷入り)
  • Timer
  • サーマルサイクラー
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • マグネットラック
  • Hula mixer(緩やかに回転するミキサー)
  • P1000 pipette and tips
  • P200 ピペットとチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
  • P2 ピペットとチップ
  • Multichannel pipette and tips

Program the thermal cycler: 30°C for 2 minutes, then 80°C for 2 minutes.

Thaw kit components at room temperature, spin down briefly using a microfuge and mix by pipetting as indicated by the table below:

Reagent 1. Thaw at room temperature 2. Briefly spin down 3. Mix well by pipetting
Rapid Barcodes (RB01-24 or RB01-96)) Not frozen
Rapid Adapter (RA) Not frozen
AMPure XP Beads (AXP) Mix by pipetting or vortexing immediately before use
Elution Buffer (EB)
Adapter Buffer (ADB) Mix by vortexing

Prepare the DNA in nuclease-free water, as follows. Approximately 50 ng of plasmid DNA is required in 9 µl of volume for each sample for barcoding.

  • Dilute your plasmid DNA samples with nuclease-free water to approximately 50 ng. See the table below for dilutions:
Starting Conc. Volume of DNA Volume of nuclease-free water Total volume
100 ng/µl 2 µl 34 µl 36 µl
90 ng/µl 2 µl 31 µl 33 µl
80 ng/µl 2 µl 27 µl 29 µl
70 ng/µl 3 µl 35 µl 38 µl
60 ng/µl 2 µl 20 µl 22 µl
50 ng/µl 2 µl 16 µl 18 µl
40 ng/µl 5 µl 31 µl 36 µl
30 ng/µl 5 µl 22 µl 27 µl
20 ng/µl 5 µl 13 µl 18 µl
10 ng/µl 10 µl 8 µl 18 µl
<5.56 ng/µl 9 µl 0 µl 9 µl
  • Pipette mix the dilutions, and spin down briefly.
  • Add 9 µl of volume for each sample into a 0.2 ml PCR tube or plate.

Select a unique barcode for every sample to be run together on the same flow cell. Up to 96 samples can be barcoded and combined in one experiment.

Please note: Only use one barcode per sample.

In 0.2 ml thin-walled PCR tubes or plate, mix the following reagents. The Rapid Barcodes can be transferred using a multichannel pipette:

Reagent Volume
50 ng template DNA 9 μl
Rapid Barcodes (RB01-96, one for each sample) 1 μl
Total 10 μl

Ensure the components are thoroughly mixed by pipetting and spin down briefly.

Incubate the tubes or plate at 30°C for 2 minutes and then at 80°C for 2 minutes. Briefly put the tubes or plate on ice to cool.

Spin down the tubes or plate to collect the liquid at the bottom.

Pool all the barcoded samples into a clean 1.5 ml Eppendorf DNA LoBind tube, noting the total volume.

. Volume per sample For 12 samples For 24 samples For 48 samples For 96 samples
Total volume 10 μl 120 μl 240 μl 480 μl 960 μl

Resuspend the AMPure XP beads (AXP) by vortexing.

To the entire pooled barcoded sample, add an equal volume of resuspended AMPure XP Beads (AXP) and mix by flicking the tube.

. Volume per sample For 12 samples For 24 samples For 48 samples For 96 samples
Volume of AXP 10 μl 120 μl 240 μl 480 μl 960 μl

Hula mixer(緩やかに回転するミキサー)で5分間インキュベートします(常温)。

Prepare at least 3 ml of fresh 80% ethanol in nuclease-free water.

Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.

Keep the tube on the magnet and wash the beads with 1.5 ml of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

前のステップを繰り返します。

Briefly spin down and place the tube back on the magnet. Pipette off any residual ethanol. Allow to dry for 30 seconds, but do not dry the pellet to the point of cracking.

Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB). Incubate for 10 minutes at room temperature.

溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。

Remove and retain 15 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

  • Remove and retain the eluate which contains the DNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
  • Dispose of the pelleted beads
CHECKPOINT

Qubit蛍光光度計を使用して、溶出したサンプル1 µlを定量します。

Transfer 11 µl of the sample into a clean 1.5 ml Eppendorf DNA LoBind tube.

Note: We recommend transfering a maximum of 800 ng of the DNA library. If necessary, take forward only the necessary volume for 800 ng of DNA library and make up the rest of the volume to 11 µl using Elution Buffer (EB).

In a fresh 1.5 ml Eppendorf DNA LoBind tube, dilute the Rapid Adapter (RA) as follows and pipette mix:

Reagent Volume
Rapid Adapter (RA) 1.5 μl
Adapter Buffer (ADB) 3.5 μl
Total 5 μl

Add 1 µl of the diluted Rapid Adapter (RA) to the barcoded DNA.

Mix gently by flicking the tube, and spin down.

Incubate the reaction for 5 minutes at room temperature.

最終ステップ

The prepared library is used for loading into the flow cell. Store the library on ice until ready to load.

5. Priming and loading the SpotON flow cell

材料
  • Flow Cell Flush (FCF)
  • Flow Cell Tether (FCT)
  • Library Solution (LIS)
  • Library Beads (LIB)
  • Sequencing Buffer (SB)

消耗品
  • 1.5 ml Eppendorf DNA LoBind tubes
  • MinIONとGridIONのFlow Cell
  • Nuclease-free water (e.g. ThermoFisher, AM9937)
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

装置
  • MinIONかGridION のデバイス
  • MinIONとGridIONのFlow Cell ライトシールド
  • P1000 ピペット及びチップ
  • P100 ピペットとチップ
  • P20 ピペットとチップ
  • P10 ピペットとチップ
重要

注意:本キットはR10.4.1フローセル(FLO-MIN114)のみに対応しています。

ヒント

フローセルのプライミングとローディング

新規ユーザーは、 初回使用前に'Priming and loading your flow cell' のビデオをご覧いただくことをお勧めします。

Using the Library Solution

For most sequencing experiments, use the Library Beads (LIB) for loading your library onto the flow cell. However, for viscous libraries it may be difficult to load with the beads and may be appropriate to load using the Library Solution (LIS).

Sequencing Buffer(SB)、Library Beads(LIB)またはLibrary Solution(LISを使用する場合のみ)、Flow Cell Tether(FCT)およびFlow Cell Flush(FCF)を室温で融解してから、ボルテックスで混合します。その後、スピンダウンして氷上で保存します。

重要

MinION R10.4.1フローセル(FLO-MIN114)での最適なシークエンス性能と出力向上のために、フローセルのプライミングミックスに最終濃度0.2 mg/mlでBovine Serum Albumin (BSA) を添加することを推奨します。

(注: その他のアルブミンの種類(組換えヒト血清アルブミンなど)の使用は推奨しません。

To prepare the flow cell priming mix with BSA, combine the following reagents and pipette mix at room temperature:

Note: The vials of Flow Cell Flush (FCF) in kit SQK-RBK114.24 and SQK-RBK114.96 have different formats. Please ensure you are using the correct volume when preparing your flow cell priming mix.

  • If using SQK-RBK114.24: The reagents can be added directly to the single-use tube of Flow Cell Flush (FCF).
  • If using SQK-RBK114.96: Prepare the reagents in a suitable tube.

Reagents Volume per flow cell
Flow Cell Flush (FCF) 1,170 µl
Bovine Serum Albumin (BSA) at 50 mg/ml 5 µl
Flow Cell Tether (FCT) 30 µl
Total volume 1,205 µl

MinIONまたはGridIONデバイスの蓋を開け、フローセルをクリップの下にスライドさせます。 フローセルをしっかりと押さえ、サーマルプレートと電気接触が密着しているかを確認してください。

Flow Cell Loading Diagrams Step 1a_JP

Flow Cell Loading Diagrams Step 1b_JP

オプショナルステップ

ライブラリーをロードする前にフローセルチェックを行い、使用可能なポアの数を把握して下さい。

フローセルが以前にチェックされている場合は、このステップを省略できます。

詳細については、MinKNOWプロトコルのフローセルチェックの手順 flow cell check instructionsを参照してください。

フローセルのプライミングポートカバーを時計方向にスライドさせ、プライミングポートを開きます。

Flow Cell Loading Diagrams Step 2_JP

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。

  1. P1000ピペットを200 µ Lに設定して下さい。
  2. ピペットの先端をプライミングポートに差し込みます。
  3. 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。

(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。

Flow Cell Loading Diagrams Step 03 V5_JP

気泡が混入しないように、プライミングポートからフローセルにプライミングミックスを800µl注入し、 5分間待ちます。この5分間の間に、以下の手順でライブラリーをロードする準備をして下さい。

Flow Cell Loading Diagrams Step 04 V5_JP

Library Beads(LIB)の液をピペッティングすることで十分に混合して下さい。

重要

Library Beads(LIB)チューブにはビーズの懸濁液が入っています。これらのビーズはすぐに沈殿するので、使用直前に混合することが重要です。

ほとんどのシーケンス実験にはLibrary Beads (LIB)の使用を推奨します。しかし、より粘性の高いライブラリーにはLibrary Solution(LIS)を使ってください。

新しい1.5mlのEppendorf DNA LoBindチューブにてライブラリーをロードする準備をします。(詳細は以下に記載されています。)

試薬 1フローセルあたりの容量
Sequencing Buffer (SB) 37.5 µl
Library Beads (LIB)またはLibrary Solution(LIS)(使用する場合)は、使用直前に混合して下さい。 25.5 µl
DNA library 12 µl
合計 75 µl

フローセルのプライミングを完了させます。

  1. SpotON サンプルポートカバーをゆっくりと持ち上げ、SpotON サンプルポートにアクセスできるようにします。
  2. 200μlのプライミングミックスをフローセルのプライミングポート(SpotONサンプルポートではありません)に気泡が入らないように注入します。

Flow Cell Loading Diagrams Step 5_JP

Flow Cell Loading Diagrams Step 06 V5_JP

調製したライブラリーは、ロードする直前にピペッティング混合して下さい。

調製したライブラリー75μlをSpotONサンプルポートからフローセルに滴下します。次の一滴を追加する前に各一滴がポートに入っていることを確認して下さい。

Flow Cell Loading Diagrams Step 07 V5_JP

SpotONサンプルポートカバーをゆっくりと元に戻し、バング(カバーの先)がSpotONポートに入ることを確認し、プライミングポートを閉じます。

Step 8 update_JP

Flow Cell Loading Diagrams Step 9_JP

重要

最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。

ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。

ライトシールドを以下のようにフローセルに設置して下さい。

  1. ライトシールドの先端を慎重にクリップに当てます。 (注: ライトシールドをクリップの下に無理に押し込まないでください。

  2. ライトシールドをフローセルにゆっくりと下ろします。ライトシールドは、フローセルの上部全体を覆うようにSpotONカバーの周囲に取り付けます。

J2264 - Light shield animation Flow Cell FAW optimised-Japanese step10

注意

MinIONフローセルライトシールドは、フローセルに固定されていないため、取り付け後の取り扱いには注意が必要です。

最終ステップ

デバイスの蓋を閉め、MinKNOWでシークエンスランをセットします。

6. Data acquisition and basecalling

How to start sequencing

The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. Please ensure MinKNOW is installed on your computer or device. Further instructions for setting up a sequencing run can be found in the MinKNOW protocol.

We recommend setting up a sequencing run on a MinION or GridION device using the basecalling and barcoding recommendations outlined below. All other parameters can be left to their default settings.

Open the MinKNOW software using the desktop shortcut and log into the MinKNOW software using your Community credentials.

Click on your connected device.

min running

Set up a sequencing run by clicking Start sequencing.

Edit 1

Type in the experiment name, select the flow cell postition and enter sample ID. Choose FLO-MIN114 flow cell type from the drop-down menu.

Click Continue to kit selection.

Edit 2

Select the Rapid Barcoding Kit 24 V14 (SQK-RBK114.24) or Rapid Barcoding Kit 96 V14 (SQK-RBK114.96).

Click Continue to Run Options to continue.

Edit 3

Change the run limit to 12 hours by clicking "Options" and changing the run limit value to 12. The other run settings can be left at the defaults.

Click Continue to basecalling to continue.

plasmid seq rbk114

plasmid seq rbk114 v1

Set up basecalling and barcoding using the following parameters:

  1. Ensure basecalling is ON.

  2. Next to "Models", click Edit options and choose High accuracy basecaller (HAC) from the drop-down menu.

  3. Ensure barcoding in ON.

  4. All other options can be kept to their default settings.

Click Continue to output and continue.

plasmid seq rbk114 v2

Set up the output format and filtering as follows:

  1. Select either .POD5 or .FAST5 (legacy) as the output format.

  2. Ensure .FASTQ is selected for basecalled reads.

  3. Ensure filtering is ON and read splitting is enabled. Other parameters can be kept to their default settings.

Click Continue to final review to continue.

plasmid seq rbk114 v3

Click "Start" to start sequencing.

You will be automatically navigated to the "Sequencing Overview" page to monitor the sequencing run.

plasmid seq rbk114 v4

7. Downstream analysis using EPI2ME Labs

Post-basecalling analysis

We recommend performing downstream analysis using EPI2ME Labs which facilitates bioinformatic analyses by allowing users to run Nextflow workflows in a desktop application. EPI2ME Labs maintains a collection of bioinformatic workflows which are curated and actively maintained by experts in long-read sequence analysis.

Further information about the available EPI2ME Labs workflows are available here, along with the Quick Start Guide to start your first bioinformatic workflow.

For the assembly of small plasmid sequences, we recommend using the wf-clone-validation workflow which requires Nextflow and Docker to be installed before running the workflow.

Open the EPI2ME app using the desktop shortcut.

Scroll down on the landing page and click on the wf-clone-validation workflow to download and confirm to install.

EPI2ME1

EPI2ME2

Navigate to the Workflows tab and click on wf-clone-validation.

EPI2ME3

Click on "Run this workflow" to open the launch wizard.

EPI2ME4

Set up your run by uploading your FASTQ file in the "Input Options". We recommend keeping the default settings for the other parameter options.

EPI2ME5

Click "Launch workflow".

Ensure all parameter options have green ticks.

EPI2ME7

Once the workflow finishes, a report will be produced.

Clone validation workflow report

A report is produced containing the results of the assembled plasmid sequences. The primary outputs of the workflow include:

  • a consensus .fasta file for each sample
  • a .csv showing the pass or fail status of each sample
  • a feature table containing annotations for each of the samples
  • an HTML report document detailing the primary findings of the workflow

A sample report can be viewed here.

Summary table and graph The summary graph shows the number of reads per barcode and the table shows the length of the consensus sequence for each barcode. These data may be used to identify the samples that may have dropped out of the sequence analysis due to insufficient sequence reads.

Plannotate For each barcode, read length statistics and a pLannotate plot is presented to illustrate the polished plasmid consensus sequence. In the sample report, barcode01 has been assembled into a 5385 bp consensus sequence. The unfilled features on the plot are incomplete features.

Feature table A feature table is also provided for each barcode to give descriptions of the annotated sequence which can be used to identify the precise location of the annotated features.

8. Ending the experiment

材料
  • Flow Cell Wash Kit (EXP-WSH004)

シークエンス実験終了後、フローセルを再利用する場合は、Flow Cell Wash Kitのプロトコールに従い、洗浄したフローセルを2~8℃で保管してください。

Flow Cell Wash Kit protocolは、Nanoporeコミュニティーで入手できます。

または、返送手順に従って、オックスフォード・ナノポアに返送してください。

フローセルの返却方法は hereをご覧ください。

(注: 製品を返却する前に、すべてのフローセルを脱イオン水で洗浄する必要があります。

重要

シークエンシング実験に関して問題が発生した場合や質問がある場合には、このプロトコルのオンライン版にあるトラブルシューティングガイドを参照してください。

9. Issues during DNA/RNA extraction and library preparation

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

サンプルの品質が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) DNA抽出で必要な純度が得られていない 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。.

追加のSPRIクリーンアップステップの実施を検討して下さい。
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。
RNAのフラグメントが予想より短い 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。

RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。

AMPureビーズクリーンアップ後のDNA回収率が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
低回収率 AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。

2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。
低回収率 DNA断片が予想よりも短い サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 SPRI cleanup
エンドプレップ後の収率が低い 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。

The VolTRAX run terminated in the middle of the library prep

Observation Possible cause Comments and actions
The green light was switched off

or

An adapter was used to connect the VolTRAX USB-C cable to the computer
Insufficient power supply to the VolTRAX The green LED signals that 3 A are being supplied to the device. This is the requirement for the full capabilities of the VolTRAX V2 device. Please use computers that meet the requirements listed on the VolTRAX V2 protocol.

The VolTRAX software shows an inaccurate amount of reagents loaded

Observation Possible cause Comments and actions
The VolTRAX software shows an inaccurate amount of reagents loaded Pipette tips do not fit the VolTRAX cartridge ports Rainin 20 μl or 30 μl and Gilson 10 μl, 20 μl or 30 μl pipette tips are compatible with loading reagents into the VolTRAX cartridge. Rainin 20 μl is the most suitable.
The VolTRAX software shows an inaccurate amount of reagents loaded The angle at which reagents are pipetted into the cartridge is incorrect The pipetting angle should be slightly greater than the cartridge inlet angle. Please watch the demo video included in the VolTRAX software before loading.

10. Issues during the sequencing run

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

シークエンス開始時のポアがフローセルチェック後よりも少ない場合

問題点 予想される原因 解決策とコメント
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ナノポアアレイに気泡が入ってしまった。 フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 フローセルがデバイスに正しく挿入されていない。 シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。

MinKNOWのスクリプトに問題

問題点 この問題が生じた可能性のある原因 解決策とコメント
MinKNOW に 「Script failed」と表示されている"
コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

予想より短いリード長

問題点 予想される原因 解決策とコメント
予想より短いリード長 DNAサンプルの不要な断片化 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。

1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。

2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 DNA gel2 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。

3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。

利用できないポアの割合が多い場合

問題点 予想される原因 解決策とコメント
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています)

image2022-3-25 10-43-25 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。
サンプル内に不純物が含まれている 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合:

1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は
2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。

Inactiveのポアの割合が高い

問題点 予想される原因 解決策とコメント
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 気泡がフローセルに混入した。 フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。
利用できないポアの割合が多い場合 サンプルDNAに含まれる不純物 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。

1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。
2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。
3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。
利用できないポアの割合が多い場合 サンプル内に不純物が含まれている 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。

Reduction in sequencing speed and q-score later into the run

Observation Possible cause Comments and actions
Reduction in sequencing speed and q-score later into the run For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell.

温度変動

問題点 予想される原因 解決策とコメント
温度変動 フローセルとデバイスの接続が途切れている。 フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。

目標温度に到達しない場合

問題点 予想される原因 解決策とコメント
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。

Last updated: 12/11/2024

Document options

MinION