Ligation sequencing amplicons - Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- Home
- Documentation
- Ligation sequencing amplicons - Native Barcoding Kit 96 V14 (SQK-NBD114.96)
MinION: Protocol
Ligation sequencing amplicons - Native Barcoding Kit 96 V14 (SQK-NBD114.96) V NBA_9170_v114_revO_12Dec2024
Barcoding of amplicon libraries
- Requires the Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- Includes no PCR steps
- Using up to 96 barcodes
- Allows analysis of native DNA
- Compatible with R10.4.1 flow cells
For Research Use Only
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 4. End-prep
- 5. Native barcode ligation
- 6. Adapter ligation and clean-up
- 7. Priming and loading the SpotON flow cell
Sequencing and data analysis
Troubleshooting
概要
Barcoding of amplicon libraries
- Requires the Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- Includes no PCR steps
- Using up to 96 barcodes
- Allows analysis of native DNA
- Compatible with R10.4.1 flow cells
For Research Use Only
1. Overview of the protocol
Introduction to the Native Barcoding Kit 96 V14 protocol
This protocol describes how to carry out native barcoding of amplicon DNA using the Native Barcoding Kit 96 V14 (SQK-NBD114.96). There are 96 unique barcodes available, allowing the user to pool up to 96 different samples in one sequencing experiment. It is highly recommended that a Lambda control experiment is completed first to become familiar with the technology.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Prepare your library
You will need to:
- Prepare the DNA ends for adapter attachment
- Ligate Native barcodes supplied in the kit to the DNA ends
- Ligate sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell
Sequencing
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Demultiplex barcoded reads in MinKNOW or the Guppy basecalling, choosing the SQK-NBD114.96 kit option
- Start the EPI2ME software and select a workflow for further analysis (this step is optional)
重要
We do not recommend mixing barcoded libraries with non-barcoded libraries prior to sequencing.
重要
Compatibility of this protocol
This protocol should only be used in combination with:
- Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- R10.4.1 flow cells (FLO-MIN114)
- Flow Cell Wash Kit (EXP-WSH004)
- Sequencing Auxiliary Vials V14 (EXP-AUX003)
- Native Barcoding Expansion V14 (EXP-NBA114)
2. Equipment and consumables
材料
- Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- 200 fmol (130 ng for 1 kb amplicons) DNA per sample to be barcoded
消耗品
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- NEBNext Ultra II End repair/dA-tailing Module (NEB, E7546)
- NEBNext Quick Ligation Module (NEB, E6056)
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
- 1.5 ml Eppendorf DNA LoBind tubes
- 2 ml Eppendorf DNA LoBind tubes
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- ヌクレアーゼフリー水で用事調整した 80% エタノール溶液
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, cat # Q32851)
- Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
装置
- Hula mixer(緩やかに回転するミキサー)
- Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
- Microfuge
- マグネットラック
- ボルテックスミキサー
- サーマルサイクラー
- Multichannel pipette and tips
- P1000 ピペット及びチップ
- P200 ピペットとチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- P2 ピペットとチップ
- アイスバケツ(氷入り)
- タイマー
- Eppendorf 5424 centrifuge (or equivalent)
- Qubit蛍光光度計(またはQCチェックのための同等品)
オプション装置
- Nanodrop spectrophotometer
For this protocol, we recommend using 200 fmol (130 ng for 1 kb amplicons) DNA per sample to be barcoded.
インプットDNA
インプットDNAのQC方法
インプットDNAの量と品質の要件を満たすことが重要です。DNAの使用量が少なすぎたり多すぎたり、あるいは品質の低いDNA(例としてDNAが非常に断片化されていたり、RNAや化学汚染物質が含まれている場合など)を使用すると、ライブラリーの調製に影響を及ぼす可能性があります。
DNAサンプルの品質管理の方法については、Input DNA/RNA QC protocolのプロトコルをご覧ください。
コンタミネーション
DNAの抽出する方法によっては、精製DNAに特定の化学汚染物質が残留する可能性があり、ライブラリ調製の効率やシークエンシングの品質に影響を及ぼす可能性があります。コンタミネーションについての詳細は、コミュニティーの Contaminants page をご覧ください。
サードパーティー試薬
このプロトコールで使用されているすべてのサードパーティー試薬は、当社が検証し、使用を推奨しているものです。Oxford Nanopore Technologiesでは、それ以外の試薬を用いたテストは行っていません。
すべてのサードパーティ製試薬については、製造元の指示に従って使用の準備をすることをお勧めします。
重要
The Native Adapter (NA) used in this kit and protocol is not interchangeable with other sequencing adapters.
Native Barcoding Kit 96 V14 (SQK-NBD114.96) contents
Note: We are in the process of updating our kits with reduced EDTA concentration.
Higher EDTA concentration format:
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (µl) |
---|---|---|---|---|
Native Barcode plate | NB01-96 | - | 3 plates | 8 µl per well |
DNA Control Sample | DCS | Yellow | 3 | 35 |
Native Adapter | NA | Green | 2 | 40 |
Sequencing Buffer | SB | Red | 2 | 700 |
Library Beads | LIB | Pink | 2 | 600 |
Library Solution | LIS | White cap, pink label | 2 | 600 |
Elution Buffer | EB | Black | 1 | 1,500 |
AMPure XP Beads | AXP | Amber | 1 | 6,000 |
Long Fragment Buffer | LFB | Orange | 1 | 7,500 |
Short Fragment Buffer | SFB | Clear | 1 | 7,500 |
EDTA† | EDTA | Clear | 1 | 700 |
Flow Cell Flush | FCF | Blue | 1 | 15,500 |
Flow Cell Tether | FCT | Purple | 2 | 200 |
† Higher concentration of EDTA with a clear cap.
Reduced EDTA concentration format:
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (µl) |
---|---|---|---|---|
Native Barcode plate | NB01-96 | - | 3 plates | 8 µl per well |
DNA Control Sample | DCS | Yellow | 3 | 35 |
Native Adapter | NA | Green | 2 | 40 |
Sequencing Buffer | SB | Red | 2 | 700 |
Library Beads | LIB | Pink | 2 | 600 |
Library Solution | LIS | White cap, pink label | 2 | 600 |
Elution Buffer | EB | Black | 1 | 1,500 |
AMPure XP Beads | AXP | Clear cap, light teal | 1 | 6,000 |
Long Fragment Buffer | LFB | Clear cap, orange label | 1 | 7,500 |
Short Fragment Buffer | SFB | Clear cap, dark blue label | 1 | 7,500 |
EDTA‡ | EDTA | Blue | 1 | 700 |
Flow Cell Flush | FCF | Clear cap, light blue label | 1 | 15,500 |
Flow Cell Tether | FCT | Purple | 2 | 200 |
‡ Reduced concentration of EDTA with a blue cap.
Note: This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.
The barcodes are orientated in columns in the barcode plate.
Note: The DNA Control Sample (DCS) is a 3.6 kb standard amplicon mapping the 3' end of the Lambda genome.
To maximise the use of the Native Barcoding Kits, the Native Barcode Auxiliary V14 (EXP-NBA114) and the Sequencing Auxiliary Vials V14 (EXP-AUX003) expansion packs are available.
These expansions provide extra library preparation and flow cell priming reagents to allow users to utilise any unused barcodes for those running in smaller subsets.
Both expansion packs used together will provide enough reagents for 12 reactions. For customers requiring extra EDTA to maximise the use of barcodes, we recommend using 0.25 M EDTA and adding 4 µl for library preps using the SQK-NBD114.24 kit and 2 µl for preps using the SQK-NBD114.96 kit.
Native Barcode Auxiliary V14 (EXP-NBA114) contents:
Note: This Product contains AMPure XP Reagent manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.
Sequencing Auxiliary Vials V14 (EXP-AUX003) contents:
Native barcode sequences
Component | Forward sequence | Reverse sequence |
---|---|---|
NB01 | CACAAAGACACCGACAACTTTCTT | AAGAAAGTTGTCGGTGTCTTTGTG |
NB02 | ACAGACGACTACAAACGGAATCGA | TCGATTCCGTTTGTAGTCGTCTGT |
NB03 | CCTGGTAACTGGGACACAAGACTC | GAGTCTTGTGTCCCAGTTACCAGG |
NB04 | TAGGGAAACACGATAGAATCCGAA | TTCGGATTCTATCGTGTTTCCCTA |
NB05 | AAGGTTACACAAACCCTGGACAAG | CTTGTCCAGGGTTTGTGTAACCTT |
NB06 | GACTACTTTCTGCCTTTGCGAGAA | TTCTCGCAAAGGCAGAAAGTAGTC |
NB07 | AAGGATTCATTCCCACGGTAACAC | GTGTTACCGTGGGAATGAATCCTT |
NB08 | ACGTAACTTGGTTTGTTCCCTGAA | TTCAGGGAACAAACCAAGTTACGT |
NB09 | AACCAAGACTCGCTGTGCCTAGTT | AACTAGGCACAGCGAGTCTTGGTT |
NB10 | GAGAGGACAAAGGTTTCAACGCTT | AAGCGTTGAAACCTTTGTCCTCTC |
NB11 | TCCATTCCCTCCGATAGATGAAAC | GTTTCATCTATCGGAGGGAATGGA |
NB12 | TCCGATTCTGCTTCTTTCTACCTG | CAGGTAGAAAGAAGCAGAATCGGA |
NB13 | AGAACGACTTCCATACTCGTGTGA | TCACACGAGTATGGAAGTCGTTCT |
NB14 | AACGAGTCTCTTGGGACCCATAGA | TCTATGGGTCCCAAGAGACTCGTT |
NB15 | AGGTCTACCTCGCTAACACCACTG | CAGTGGTGTTAGCGAGGTAGACCT |
NB16 | CGTCAACTGACAGTGGTTCGTACT | AGTACGAACCACTGTCAGTTGACG |
NB17 | ACCCTCCAGGAAAGTACCTCTGAT | ATCAGAGGTACTTTCCTGGAGGGT |
NB18 | CCAAACCCAACAACCTAGATAGGC | GCCTATCTAGGTTGTTGGGTTTGG |
NB19 | GTTCCTCGTGCAGTGTCAAGAGAT | ATCTCTTGACACTGCACGAGGAAC |
NB20 | TTGCGTCCTGTTACGAGAACTCAT | ATGAGTTCTCGTAACAGGACGCAA |
NB21 | GAGCCTCTCATTGTCCGTTCTCTA | TAGAGAACGGACAATGAGAGGCTC |
NB22 | ACCACTGCCATGTATCAAAGTACG | CGTACTTTGATACATGGCAGTGGT |
NB23 | CTTACTACCCAGTGAACCTCCTCG | CGAGGAGGTTCACTGGGTAGTAAG |
NB24 | GCATAGTTCTGCATGATGGGTTAG | CTAACCCATCATGCAGAACTATGC |
NB25 | GTAAGTTGGGTATGCAACGCAATG | CATTGCGTTGCATACCCAACTTAC |
NB26 | CATACAGCGACTACGCATTCTCAT | ATGAGAATGCGTAGTCGCTGTATG |
NB27 | CGACGGTTAGATTCACCTCTTACA | TGTAAGAGGTGAATCTAACCGTCG |
NB28 | TGAAACCTAAGAAGGCACCGTATC | GATACGGTGCCTTCTTAGGTTTCA |
NB29 | CTAGACACCTTGGGTTGACAGACC | GGTCTGTCAACCCAAGGTGTCTAG |
NB30 | TCAGTGAGGATCTACTTCGACCCA | TGGGTCGAAGTAGATCCTCACTGA |
NB31 | TGCGTACAGCAATCAGTTACATTG | CAATGTAACTGATTGCTGTACGCA |
NB32 | CCAGTAGAAGTCCGACAACGTCAT | ATGACGTTGTCGGACTTCTACTGG |
NB33 | CAGACTTGGTACGGTTGGGTAACT | AGTTACCCAACCGTACCAAGTCTG |
NB34 | GGACGAAGAACTCAAGTCAAAGGC | GCCTTTGACTTGAGTTCTTCGTCC |
NB35 | CTACTTACGAAGCTGAGGGACTGC | GCAGTCCCTCAGCTTCGTAAGTAG |
NB36 | ATGTCCCAGTTAGAGGAGGAAACA | TGTTTCCTCCTCTAACTGGGACAT |
NB37 | GCTTGCGATTGATGCTTAGTATCA | TGATACTAAGCATCAATCGCAAGC |
NB38 | ACCACAGGAGGACGATACAGAGAA | TTCTCTGTATCGTCCTCCTGTGGT |
NB39 | CCACAGTGTCAACTAGAGCCTCTC | GAGAGGCTCTAGTTGACACTGTGG |
NB40 | TAGTTTGGATGACCAAGGATAGCC | GGCTATCCTTGGTCATCCAAACTA |
NB41 | GGAGTTCGTCCAGAGAAGTACACG | CGTGTACTTCTCTGGACGAACTCC |
NB42 | CTACGTGTAAGGCATACCTGCCAG | CTGGCAGGTATGCCTTACACGTAG |
NB43 | CTTTCGTTGTTGACTCGACGGTAG | CTACCGTCGAGTCAACAACGAAAG |
NB44 | AGTAGAAAGGGTTCCTTCCCACTC | GAGTGGGAAGGAACCCTTTCTACT |
NB45 | GATCCAACAGAGATGCCTTCAGTG | CACTGAAGGCATCTCTGTTGGATC |
NB46 | GCTGTGTTCCACTTCATTCTCCTG | CAGGAGAATGAAGTGGAACACAGC |
NB47 | GTGCAACTTTCCCACAGGTAGTTC | GAACTACCTGTGGGAAAGTTGCAC |
NB48 | CATCTGGAACGTGGTACACCTGTA | TACAGGTGTACCACGTTCCAGATG |
NB49 | ACTGGTGCAGCTTTGAACATCTAG | CTAGATGTTCAAAGCTGCACCAGT |
NB50 | ATGGACTTTGGTAACTTCCTGCGT | ACGCAGGAAGTTACCAAAGTCCAT |
NB51 | GTTGAATGAGCCTACTGGGTCCTC | GAGGACCCAGTAGGCTCATTCAAC |
NB52 | TGAGAGACAAGATTGTTCGTGGAC | GTCCACGAACAATCTTGTCTCTCA |
NB53 | AGATTCAGACCGTCTCATGCAAAG | CTTTGCATGAGACGGTCTGAATCT |
NB54 | CAAGAGCTTTGACTAAGGAGCATG | CATGCTCCTTAGTCAAAGCTCTTG |
NB55 | TGGAAGATGAGACCCTGATCTACG | CGTAGATCAGGGTCTCATCTTCCA |
NB56 | TCACTACTCAACAGGTGGCATGAA | TTCATGCCACCTGTTGAGTAGTGA |
NB57 | GCTAGGTCAATCTCCTTCGGAAGT | ACTTCCGAAGGAGATTGACCTAGC |
NB58 | CAGGTTACTCCTCCGTGAGTCTGA | TCAGACTCACGGAGGAGTAACCTG |
NB59 | TCAATCAAGAAGGGAAAGCAAGGT | ACCTTGCTTTCCCTTCTTGATTGA |
NB60 | CATGTTCAACCAAGGCTTCTATGG | CCATAGAAGCCTTGGTTGAACATG |
NB61 | AGAGGGTACTATGTGCCTCAGCAC | GTGCTGAGGCACATAGTACCCTCT |
NB62 | CACCCACACTTACTTCAGGACGTA | TACGTCCTGAAGTAAGTGTGGGTG |
NB63 | TTCTGAAGTTCCTGGGTCTTGAAC | GTTCAAGACCCAGGAACTTCAGAA |
NB64 | GACAGACACCGTTCATCGACTTTC | GAAAGTCGATGAACGGTGTCTGTC |
NB65 | TTCTCAGTCTTCCTCCAGACAAGG | CCTTGTCTGGAGGAAGACTGAGAA |
NB66 | CCGATCCTTGTGGCTTCTAACTTC | GAAGTTAGAAGCCACAAGGATCGG |
NB67 | GTTTGTCATACTCGTGTGCTCACC | GGTGAGCACACGAGTATGACAAAC |
NB68 | GAATCTAAGCAAACACGAAGGTGG | CCACCTTCGTGTTTGCTTAGATTC |
NB69 | TACAGTCCGAGCCTCATGTGATCT | AGATCACATGAGGCTCGGACTGTA |
NB70 | ACCGAGATCCTACGAATGGAGTGT | ACACTCCATTCGTAGGATCTCGGT |
NB71 | CCTGGGAGCATCAGGTAGTAACAG | CTGTTACTACCTGATGCTCCCAGG |
NB72 | TAGCTGACTGTCTTCCATACCGAC | GTCGGTATGGAAGACAGTCAGCTA |
NB73 | AAGAAACAGGATGACAGAACCCTC | GAGGGTTCTGTCATCCTGTTTCTT |
NB74 | TACAAGCATCCCAACACTTCCACT | AGTGGAAGTGTTGGGATGCTTGTA |
NB75 | GACCATTGTGATGAACCCTGTTGT | ACAACAGGGTTCATCACAATGGTC |
NB76 | ATGCTTGTTACATCAACCCTGGAC | GTCCAGGGTTGATGTAACAAGCAT |
NB77 | CGACCTGTTTCTCAGGGATACAAC | GTTGTATCCCTGAGAAACAGGTCG |
NB78 | AACAACCGAACCTTTGAATCAGAA | TTCTGATTCAAAGGTTCGGTTGTT |
NB79 | TCTCGGAGATAGTTCTCACTGCTG | CAGCAGTGAGAACTATCTCCGAGA |
NB80 | CGGATGAACATAGGATAGCGATTC | GAATCGCTATCCTATGTTCATCCG |
NB81 | CCTCATCTTGTGAAGTTGTTTCGG | CCGAAACAACTTCACAAGATGAGG |
NB82 | ACGGTATGTCGAGTTCCAGGACTA | TAGTCCTGGAACTCGACATACCGT |
NB83 | TGGCTTGATCTAGGTAAGGTCGAA | TTCGACCTTACCTAGATCAAGCCA |
NB84 | GTAGTGGACCTAGAACCTGTGCCA | TGGCACAGGTTCTAGGTCCACTAC |
NB85 | AACGGAGGAGTTAGTTGGATGATC | GATCATCCAACTAACTCCTCCGTT |
NB86 | AGGTGATCCCAACAAGCGTAAGTA | TACTTACGCTTGTTGGGATCACCT |
NB87 | TACATGCTCCTGTTGTTAGGGAGG | CCTCCCTAACAACAGGAGCATGTA |
NB88 | TCTTCTACTACCGATCCGAAGCAG | CTGCTTCGGATCGGTAGTAGAAGA |
NB89 | ACAGCATCAATGTTTGGCTAGTTG | CAACTAGCCAAACATTGATGCTGT |
NB90 | GATGTAGAGGGTACGGTTTGAGGC | GCCTCAAACCGTACCCTCTACATC |
NB91 | GGCTCCATAGGAACTCACGCTACT | AGTAGCGTGAGTTCCTATGGAGCC |
NB92 | TTGTGAGTGGAAAGATACAGGACC | GGTCCTGTATCTTTCCACTCACAA |
NB93 | AGTTTCCATCACTTCAGACTTGGG | CCCAAGTCTGAAGTGATGGAAACT |
NB94 | GATTGTCCTCAAACTGCCACCTAC | GTAGGTGGCAGTTTGAGGACAATC |
NB95 | CCTGTCTGGAAGAAGAATGGACTT | AAGTCCATTCTTCTTCCAGACAGG |
NB96 | CTGAACGGTCATAGAGTCCACCAT | ATGGTGGACTCTATGACCGTTCAG |
3. Computer requirements and software
MinION Mk1B IT requirements
Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1B IT requirements document.
MinION Mk1C IT requirements
The MinION Mk1C contains fully-integrated compute and screen, removing the need for any accessories to generate and analyse nanopore data. For more information refer to the MinION Mk1C IT requirements document.
MinION Mk1D IT requirements
Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.
Software for nanopore sequencing
MinKNOW
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
EPI2ME (optional)
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.
フローセルのチェックをしてください
シークエンシング実験を開始する前に、フローセルのポアの数を確認することを強くお勧めします。このフローセルの確認は、MinION/GridION/PromethIONの場合は代理店への到着から12週間以内に行ってください。またはFlongle Flow Cellの場合は代理店への到着から4週間以内に行う必要があります。Oxford Nanopore Technologiesは、フローセルチェックの実施から2日以内に結果が報告され、推奨される保管方法に従っていた場合に、以下の表に記載されているナノポアの有効数に満たさない場合には、フローセルを交換します。 フローセルのチェックを行うには、Flow Cell Check documentの指示に従ってください。
Flow cell | 保証する最小有効ポア数(以下の数未満のフローセルが交換対象となります) |
---|---|
Flongle Flow Cell | 50 |
MinION/GridION Flow Cell | 800 |
PromethION Flow Cell | 5000 |
4. End-prep
材料
- 200 fmol (130 ng for 1 kb amplicons) DNA per sample to be barcoded
- DNA Control Sample (DCS)
消耗品
- NEBNext® Ultra II End Repair / dA-tailing Module (NEB, E7546)
- 1.5 ml Eppendorf DNA LoBind tubes
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
- Nuclease-free water (e.g. ThermoFisher, AM9937)
装置
- P1000 ピペット及びチップ
- P200 pipette and tips
- P100 ピペットとチップ
- P20 pipette and tips
- P10 ピペットとチップ
- P2 pipette and tips
- Multichannel pipette and tips
- Thermal cycler
- Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
- アイスバケツ(氷入り)
Thaw the DNA Control Sample (DCS) at room temperature, mix by vortexing, and place on ice.
Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:
For optimal performance, NEB recommend the following:
Thaw all reagents on ice.
Ensure the reagents are well mixed.
Note: Do not vortex the Ultra II End Prep Enzyme Mix.Always spin down tubes before opening for the first time each day.
The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.
重要
Do not vortex the NEBNext Ultra II End Prep Enzyme Mix.
重要
It is important that the NEBNext Ultra II End Prep Reaction Buffer is mixed well by vortexing.
Check for any visible precipitate; vortexing for at least 30 seconds may be required to solubilise all precipitate.
Dilute your DNA Control Sample (DCS) by adding 105 µl Elution Buffer (EB) directly to one DCS tube. Mix gently by pipetting and spin down.
One tube of diluted DNA Control Sample (DCS) is enough for 140 samples. Excess can be stored at -20°C in the freezer.
ヒント
トラブルシューティングの為、DNAコントロールサンプル(DCS)を自身のライブラリーに添加して、プレップコントロール用に使用することを推奨します。ただし、このステップを省略して、1 µlをサンプルDNAで補うこともできます。
In a clean 96-well plate, aliquot 200 fmol (130 ng for 1 kb amplicons) of DNA per sample.
Make up each sample to 11.5 µl using nuclease-free water. Mix gently by pipetting and spin down.
Combine the following components per well:
Between each addition, pipette mix 10-20 times.
Reagents | Volume |
---|---|
200 fmol amplicon DNA | 11.5 µl |
Diluted DNA Control Sample (DCS) | 1 µl |
Ultra II End-prep Reaction Buffer | 1.75 µl |
Ultra II End-prep Enzyme Mix | 0.75 µl |
Total | 15 µl |
ヒント
We recommend making up a master mix of the end-prep reagents for the total number of samples and adding 2.5 µl to each well.
Ensure the components are thoroughly mixed by pipetting and spin down briefly.
サーマルサイクラーを使用して、初めに20℃で5分間インキュベートした後に、65℃で5分間インキュベートしてください。
最終ステップ
Take forward the end-prepped DNA into the native barcode ligation step.
If users want to pause the library preparation here, we recommend cleaning up your sample with 1X AMPure XP Beads (AXP) and eluting in nuclease-free water before storing at 4°C.
Please note, extra AMPure XP Beads (AXP) will be required for this optional step.
5. Native barcode ligation
材料
- Native Barcodes (NB01-NB96)
- AMPure XP Beads (AXP)
- EDTA (EDTA)
消耗品
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- ヌクレアーゼフリー水で用事調整した 80% エタノール溶液
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- 1.5 ml Eppendorf DNA LoBind tubes
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, cat # Q32851)
装置
- Magnetic rack
- ボルテックスミキサー
- Hula mixer(緩やかに回転するミキサー)
- Microfuge
- サーマルサイクラー
- アイスバケツ(氷入り)
- Multichannel pipette and tips
- P1000 ピペット及びチップ
- P200 pipette and tips
- P100 ピペットとチップ
- P20 pipette and tips
- P10 ピペットとチップ
- P2 pipette and tips
- Qubit蛍光光度計(またはQCチェックのための同等品)
Prepare the NEB Blunt/TA Ligase Master Mix according to the manufacturer's instructions, and place on ice:
Thaw the reagents at room temperature.
Spin down the reagent tubes for 5 seconds.
Ensure the reagents are fully mixed by performing 10 full volume pipette mixes.
Thaw the AMPure XP Beads (AXP) at room temperature and mix by vortexing. Keep the beads at room temperature.
Thaw the EDTA at room temperature and mix by vortexing. Then spin down and place on ice.
Thaw the Native Barcodes (NB01-96) required for your number of samples at room temperature. Individually mix the barcodes by pipetting, spin down, and place them on ice.
Select a unique barcode for every sample to be run together on the same flow cell. Up to 96 samples can be barcoded and combined in one experiment.
Please note: Only use one barcode per sample.
In a new 96-well plate, add the reagents in the following order per well mixing well by pipetting between each addition:
Reagent | Volume |
---|---|
Nuclease-free water | 3 µl |
End-prepped DNA | 0.75 µl |
Native Barcode (NB01-96) | 1.25 µl |
Blunt/TA Ligase Master Mix | 5 µl |
Total | 10 µl |
反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。
Incubate for 20 minutes at room temperature.
Add the following volume of EDTA to each well and mix thoroughly by pipetting and spin down briefly.
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
EDTA cap colour | Volume per well |
---|---|
For clear cap EDTA | 1 µl |
For blue cap EDTA | 2 µl |
ヒント
EDTA is added at this step to stop the reaction.
Pool the barcoded samples in a 1.5 ml Eppendorf DNA LoBind tube.
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
Volume per sample | For 24 samples | For 48 samples | For 96 samples | |
---|---|---|---|---|
Total volume for preps using clear cap EDTA | 11 µl | 264 µl | 528 µl | 1,056 µl |
Total volume for preps using blue cap EDTA | 12 µl | 288 µl | 576 µl | 1,152 µl |
ヒント
We recommend checking the base of your tubes/plate are all the same volume before pooling and after to ensure all the liquid has been taken forward.
Resuspend the AMPure XP Beads (AXP) by vortexing.
Add 0.4X AMPure XP Beads (AXP) to the pooled reaction, and mix by pipetting.
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
Volume per sample | For 24 samples | For 48 samples | For 96 samples | |
---|---|---|---|---|
Volume of AXP for preps using clear cap EDTA | 4 µl | 106 µl | 211 µl | 422 µl |
Volume of AXP for preps using blue cap EDTA | 5 µl | 115 µl | 230 µl | 461 µl |
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Prepare 2 ml of fresh 80% ethanol in nuclease-free water.
Spin down the sample and pellet on a magnet for 5 minutes. Keep the plate on the magnetic rack until the eluate is clear and colourless, and pipette off the supernatant.
Keep the tube on the magnetic rack and wash the beads with 700 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
前のステップを繰り返します。
Spin down and place the tube back on the magnetic rack. Pipette off any residual ethanol. Allow the pellet to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
Remove the tube from the magnetic rack and resuspend the pellet in 35 µl nuclease-free water by gently flicking.
Incubate for 10 minutes at 37°C. Every 2 minutes, agitate the sample by gently flicking for 10 seconds to encourage DNA elution.
Pellet the beads on a magnetic rack until the eluate is clear and colourless.
Remove and retain 35 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Qubit蛍光光度計を使用して、溶出したサンプル1 µlを定量します。
最終ステップ
Take forward the barcoded DNA library to the adapter ligation and clean-up step. However, you may store the sample at 4°C overnight.
6. Adapter ligation and clean-up
材料
- Long Fragment Buffer (LFB)
- Short Fragment Buffer (SFB)
- Elution Buffer (EB)
- Native Adapter (NA)
- AMPure XP Beads (AXP)
消耗品
- NEBNext® Quick Ligation Module (NEB, E6056)
- 1.5 ml Eppendorf DNA LoBind tubes
- Qubit™ Assay Tubes (Invitrogen, Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, cat # Q32851)
装置
- 小型遠心機
- マグネットラック
- ボルテックスミキサー
- Hula mixer(緩やかに回転するミキサー)
- サーマルサイクラー
- P1000 ピペット及びチップ
- P200 ピペットとチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
- Ice bucket with ice
- Qubit蛍光光度計(またはQCチェックのための同等品)
重要
The Native Adapter (NA) used in this kit and protocol is not interchangeable with other sequencing adapters.
Prepare the NEBNext Quick Ligation Reaction Module according to the manufacturer's instructions, and place on ice:
Thaw the reagents at room temperature.
Spin down the reagent tubes for 5 seconds.
Ensure the reagents are fully mixed by performing 10 full volume pipette mixes. Note: Do NOT vortex the Quick T4 DNA Ligase.
The NEBNext Quick Ligation Reaction Buffer (5x) may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for several seconds to ensure the reagent is thoroughly mixed.
重要
Do not vortex the Quick T4 DNA Ligase.
Spin down the Native Adapter (NA) and Quick T4 DNA Ligase, pipette mix and place on ice.
Thaw the Elution Buffer (EB) at room temperature and mix by vortexing. Then spin down and place on ice.
重要
使用するウォッシュバッファー(LFBまたはSFB)に応じて、アダプターライゲーション後のクリーンアップステップは、3 kb以上のDNAの断片を濃縮するか、全ての断片長を均等に精製するように設計されています。
- 3kb以上のDNA断片を濃縮するには、Long Fragment Buffer (LFB)を使用してください。
- 一方であらゆるサイズの DNA 断片を保持するには、Short Fragment Buffer (SFB) を使用してください。
Long Fragment Buffer(LFB)または Short Fragment Buffer(SFB)のいずれかを室温で解凍し、ボルテックスで混合します。その後、スピンダウンして氷の上に置きます。
In a 1.5 ml Eppendorf LoBind tube, mix in the following order:
Between each addition, pipette mix 10 - 20 times.
Reagent | Volume |
---|---|
Pooled barcoded sample | 30 µl |
Native Adapter (NA) | 5 µl |
NEBNext Quick Ligation Reaction Buffer (5X) | 10 µl |
Quick T4 DNA Ligase | 5 µl |
Total | 50 µl |
反応液を完全に混合するために、ゆっくりとピペッティングし短時間スピンダウンして下さい。
Incubate the reaction for 20 minutes at room temperature.
重要
The next clean-up step uses Long Fragment Buffer (LFB) or Short Fragment Buffer (SFB) rather than 80% ethanol to wash the beads. The use of ethanol will be detrimental to the sequencing reaction.
Resuspend the AMPure XP Beads (AXP) by vortexing.
Add 20 µl of resuspended AMPure XP Beads (AXP) to the reaction and mix by pipetting.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Spin down the sample and pellet on the magnetic rack. Keep the tube on the magnet and pipette off the supernatant.
Wash the beads by adding either 125 μl Long Fragment Buffer (LFB) or Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
前のステップを繰り返します。
Spin down and place the tube back on the magnet. Pipette off any residual supernatant.
Remove the tube from the magnetic rack and resuspend pellet in 15 µl Elution Buffer (EB).
Spin down and incubate for 10 minutes at 37°C. Every 2 minutes, agitate the sample by gently flicking for 10 seconds to encourage DNA elution.
溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。
DNA ライブラリーを含む 15 µl の溶出液を取り出し、清潔な 1.5 ml Eppendorf DNA LoBind tube に移し替えます。
ペレット化したビーズを廃棄します。
CHECKPOINT
Qubit蛍光光度計を使用して、溶出したサンプル1 µlを定量します。
DNA ライブラリーの断片サイズに応じて、12 µl の Elution Buffer (EB) で最終のライブラリーを調製します。
DNAライブラリー断片長 | フローセルローディングの量 |
---|---|
非常に短い (<1 kb) | 100 fmol |
短い (1-10 kb) | 35–50 fmol |
長い(>10 kb) | 300 ng |
(注: ライブラリーの収量が推奨入力値以下の場合は、ライブラリーの全部の量をロードして下さい。
NEB calculatorなどの計算機を使ってMassとMolの計算をすることを推奨します.
最終ステップ
The prepared library is used for loading onto the flow cell. Store the library on ice or at 4°C until ready to load.
ヒント
推奨のライブラリー保存方法
短期間の保存や繰り返し使用する場合は__(例 フローセルをウオッシュして再度ロードする場合)は、ライブラリーをEppendorf DNA LoBindチューブに入れ、__4℃で保存 することをお勧めします。 __3か月以上の長期保存の場合は、____ライブラリーをEppendorf DNA LoBindチューブに -80 ° Cで保存 することをお勧めします。
オプショナルステップ
If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.
Depending on how many flow cells the library will be split across, more Elution Buffer (EB) than what is supplied in the kit will be required.
7. Priming and loading the SpotON flow cell
材料
- Flow Cell Flush (FCF)
- Flow Cell Tether (FCT)
- Library Solution (LIS)
- Library Beads (LIB)
- Sequencing Buffer (SB)
消耗品
- 1.5 ml Eppendorf DNA LoBind tubes
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
装置
- MinIONかGridION のデバイス
- SpotON Flow Cell
- MinIONとGridIONのFlow Cell ライトシールド
- P1000 ピペット及びチップ
- P100 ピペットとチップ
- P20 ピペットとチップ
- P10 ピペットとチップ
重要
注意:本キットはR10.4.1フローセル(FLO-MIN114)のみに対応しています。
Using the Library Solution
For most sequencing experiments, use the Library Beads (LIB) for loading your library onto the flow cell. However, for viscous libraries it may be difficult to load with the beads and may be appropriate to load using the Library Solution (LIS).
Sequencing Buffer(SB)、Library Beads(LIB)またはLibrary Solution(LISを使用する場合のみ)、Flow Cell Tether(FCT)およびFlow Cell Flush(FCF)を室温で融解してから、ボルテックスで混合します。その後、スピンダウンして氷上で保存します。
重要
MinION R10.4.1フローセル(FLO-MIN114)での最適なシークエンス性能と出力向上のために、フローセルのプライミングミックスに最終濃度0.2 mg/mlでBovine Serum Albumin (BSA) を添加することを推奨します。
(注: その他のアルブミンの種類(組換えヒト血清アルブミンなど)の使用は推奨しません。
To prepare the flow cell priming mix with BSA, combine the following reagents in a fresh 1.5 ml Eppendorf DNA LoBind tube. Mix by inverting the tube and pipette mix at room temperature:
Reagents | Volume per flow cell |
---|---|
Flow Cell Flush (FCF) | 1,170 µl |
Bovine Serum Albumin (BSA) at 50 mg/ml | 5 µl |
Flow Cell Tether (FCT) | 30 µl |
Final total volume in tube | 1,205 µl |
MinIONまたはGridIONデバイスの蓋を開け、フローセルをクリップの下にスライドさせます。 フローセルをしっかりと押さえ、サーマルプレートと電気接触が密着しているかを確認してください。
オプショナルステップ
ライブラリーをロードする前にフローセルチェックを行い、使用可能なポアの数を把握して下さい。
フローセルが以前にチェックされている場合は、このステップを省略できます。
詳細については、MinKNOWプロトコルのフローセルチェックの手順 flow cell check instructionsを参照してください。
フローセルのプライミングポートカバーを時計方向にスライドさせ、プライミングポートを開きます。
重要
フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。
プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。
- P1000ピペットを200 µ Lに設定して下さい。
- ピペットの先端をプライミングポートに差し込みます。
- 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。
(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。
気泡が混入しないように、プライミングポートからフローセルにプライミングミックスを800µl注入し、 5分間待ちます。この5分間の間に、以下の手順でライブラリーをロードする準備をして下さい。
Library Beads(LIB)の液をピペッティングすることで十分に混合して下さい。
重要
Library Beads(LIB)チューブにはビーズの懸濁液が入っています。これらのビーズはすぐに沈殿するので、使用直前に混合することが重要です。
ほとんどのシーケンス実験にはLibrary Beads (LIB)の使用を推奨します。しかし、より粘性の高いライブラリーにはLibrary Solution(LIS)を使ってください。
新しい1.5mlのEppendorf DNA LoBindチューブにてライブラリーをロードする準備をします。(詳細は以下に記載されています。)
試薬 | 1フローセルあたりの容量 |
---|---|
Sequencing Buffer (SB) | 37.5 µl |
Library Beads (LIB)またはLibrary Solution(LIS)(使用する場合)は、使用直前に混合して下さい。 | 25.5 µl |
DNA library | 12 µl |
合計 | 75 µl |
フローセルのプライミングを完了させます。
- SpotON サンプルポートカバーをゆっくりと持ち上げ、SpotON サンプルポートにアクセスできるようにします。
- 200μlのプライミングミックスをフローセルのプライミングポート(SpotONサンプルポートではありません)に気泡が入らないように注入します。
調製したライブラリーは、ロードする直前にピペッティング混合して下さい。
調製したライブラリー75μlをSpotONサンプルポートからフローセルに滴下します。次の一滴を追加する前に各一滴がポートに入っていることを確認して下さい。
SpotONサンプルポートカバーをゆっくりと元に戻し、バング(カバーの先)がSpotONポートに入ることを確認し、プライミングポートを閉じます。
重要
最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。
ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。
ライトシールドを以下のようにフローセルに設置して下さい。
ライトシールドの先端を慎重にクリップに当てます。 (注: ライトシールドをクリップの下に無理に押し込まないでください。
ライトシールドをフローセルにゆっくりと下ろします。ライトシールドは、フローセルの上部全体を覆うようにSpotONカバーの周囲に取り付けます。
注意
MinIONフローセルライトシールドは、フローセルに固定されていないため、取り付け後の取り扱いには注意が必要です。
最終ステップ
デバイスの蓋を閉め、MinKNOWでシークエンスランをセットします。
8. Data acquisition and basecalling
Overview of nanopore data analysis
For a full overview of nanopore data analysis, which includes options for basecalling and post-basecalling analysis, please refer to the Data Analysis document.
How to start sequencing
The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. Please ensure MinKNOW is installed on your computer or device. There are multiple options for how to carry out sequencing:
1. Data acquisition and basecalling in real-time using MinKNOW on a computer
Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section.
2. Data acquisition and basecalling in real-time using the MinION Mk1B/Mk1D device
Follow the instructions in the MinION Mk1B user manual or the MinION Mk1D user manual.
3. Data acquisition and basecalling in real-time using the MinION Mk1C device
Follow the instructions in the MinION Mk1C user manual.
4. Data acquisition and basecalling in real-time using the GridION device
Follow the instructions in the GridION user manual.
5. Data acquisition and basecalling in real-time using the PromethION device
Follow the instructions in the PromethION user manual or the PromethION 2 Solo user manual.
6. Data acquisition using MinKNOW on a computer and basecalling at a later time using MinKNOW
Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section. When setting your experiment parameters, set the Basecalling tab to OFF. After the sequencing experiment has completed, follow the instructions in the Post-run analysis section of the MinKNOW protocol.
9. ダウンストリーム解析
ベースコール後の分析
ベースコールされたデータをさらに解析するには、いくつかの方法があります。
1. EPI2ME workflows
詳細なデータ解析のために、オックスフォード・ナノポア・テクノロジーズは、EPI2MEで利用可能な様々なバイオインフォマティクスのチュートリアルとワークフローを提供しています。このプラットフォームでは、研究チームとアプリケーションチームがGitHubに保存しているワークフローを記載しています。このプラットフォーム内にはバイオインフォマティクスのコードと説明をしているコメント、およびサンプルデータを使ってコードを試すことが出来ます。
2. 研究分析ツール
Oxford Nanopore Technologiesの研究部門では、Oxford Nanopore GitHub repositoryで多数の分析ツールを公開しています。これらのツールは上級ユーザー向けであり、ソフトウェアのインストールと実行方法の説明が含まれています。これらのツールは最低限のサポートしかしていません。
3. コミュニティーで開発されたツール
研究課題に適したデータ解析方法が上記のリソースのいずれにも記載されていない場合は、 resource centre を参照し、アプリケーションに適したバイオインフォマティクスツールを検索してください。 Nanoporeコミュニティーの多くのメンバーが、 ナノポアシークエンシングデータを解析するための独自のツールやパイプラインを開発しており、そのほとんどはGitHubで利用可能です。これらのツールはOxford Nanopore Technologiesではサポート対象外であり、最新のケミストリーやソフトウェア構成との互換性を保証するものではありませんのでご了承ください。
10. フローセルの再利用と返却
材料
- Flow Cell Wash Kit (EXP-WSH004)
シークエンス実験終了後、フローセルを再利用する場合は、Flow Cell Wash Kitのプロトコールに従い、洗浄したフローセルを2~8℃で保管してください。
Flow Cell Wash Kit protocolは、Nanoporeコミュニティーで入手できます。
ヒント
運転を停止したらできるだけ早くフローセルをウォッシュすることをお勧めします。しかし、これが不可能な場合はフローセルをデバイスに入れたまま、翌日にウォッシュをして下さい。
または、返送手順に従って、オックスフォード・ナノポアに返送してください。
フローセルの返却方法は hereをご覧ください。
(注: 製品を返却する前に、すべてのフローセルを脱イオン水で洗浄する必要があります。
重要
シークエンシング実験に関して問題が発生した場合や質問がある場合には、このプロトコルのオンライン版にあるトラブルシューティングガイドを参照してください。
11. Issues during DNA/RNA extraction and library preparation for Kit 14
以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。
Nanopore Community Support セクションにFAQをご用意しています。
ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。
サンプルの品質が低い
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) | DNA抽出で必要な純度が得られていない | 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。. 追加のSPRIクリーンアップステップの実施を検討して下さい。 |
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) | 抽出中にRNAが分解された | 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。 |
RNAのフラグメントが予想より短い | 抽出中にRNAが分解された | 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。 RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。 |
AMPureビーズクリーンアップ後のDNA回収率が低い
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
低回収率 | AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 | 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。 2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。 |
低回収率 | DNA断片が予想よりも短い | サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 |
エンドプレップ後の収率が低い | 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 | エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。 |
12. Issues during the sequencing run for Kit 14
以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。
Nanopore Community Support セクションにFAQをご用意しています。
ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。
シークエンス開始時のポアがフローセルチェック後よりも少ない場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | ナノポアアレイに気泡が入ってしまった。 | フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。 |
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | フローセルがデバイスに正しく挿入されていない。 | シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。 |
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 | ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 | フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。 |
MinKNOWのスクリプトに問題
問題点 | この問題が生じた可能性のある原因 | 解決策とコメント |
---|---|---|
MinKNOW に 「Script failed」と表示されている" | コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。 |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | 10–20 fmol of good quality library can be loaded on to a MinION/GridION flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Native Barcoding Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FCT tube). Make sure FCT was added to FCF before priming. |
予想より短いリード長
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
予想より短いリード長 | DNAサンプルの不要な断片化 | 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。 1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。 2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。 3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。 |
利用できないポアの割合が多い場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています) 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。 | サンプル内に不純物が含まれている | 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合: 1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は 2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。 |
Inactiveのポアの割合が高い
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 | 気泡がフローセルに混入した。 | フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。 |
利用できないポアの割合が多い場合 | サンプルDNAに含まれる不純物 | 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。 1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。 2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。 3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。 |
利用できないポアの割合が多い場合 | サンプル内に不純物が含まれている | 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。 |
Reduction in sequencing speed and q-score later into the run
Observation | Possible cause | Comments and actions |
---|---|---|
Reduction in sequencing speed and q-score later into the run | Fast fuel consumption is typically seen in Kit 9 chemistry (e.g. SQK-LSK109) when the flow cell is overloaded with library. Please see the appropriate protocol for your DNA library to find the recommendation. | Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell. |
温度変動
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
温度変動 | フローセルとデバイスの接続が途切れている。 | フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。 |
目標温度に到達しない場合
問題点 | 予想される原因 | 解決策とコメント |
---|---|---|
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" | 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 | MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。 |