Library recovery from flow cells

概要

  • This protocol is for recovering DNA libraries from flow cells for continued sequencing
  • Compatible with both MinION and PromethION flow cells, and all DNA sequencing kits

For Research Use Only

Document version: LIR_9178_v1_revK_13Dec2024

1. Overview of the protocol

Introduction to the protocol

This protocol outlines three methods for recovering a library for either transfer to a new flow cell or to wash the original flow cell for further sequencing of the recovered library. We recommend using these protocols to maximise sequencing output per sample or to provide additional support where a flow cell has failed mid-run.

A DNA library generated using any of our sequencing kits can be recovered and transferred for both MinION and PromethION Flow Cells. We recommend that a library can be recovered up to 2-3 times for successful sequencing on either a washed or a new flow cell.

Steps in the workflow:

Prepare for your experiment

You will need to:

  • If using a new flow cell, check to ensure it has enough pores for a good sequencing run
  • Ensure you have enough flow cell priming reagents, the correct equipment and third-party reagents

Method 1 Transfer a library between flow cells

You will need to:

  • Stop sequencing on MinKNOW
  • Prime the second flow cell
  • Recover the library from the original flow cell
  • Transfer to the new flow cell within two hours
  • Start a new sequencing run on MinKNOW

Method1

Method 2 Clean up and transfer a library between flow cells

You will need to:

  • Stop sequencing on MinKNOW
  • Recover the library from the original flow cell
  • SPRI clean the recovered library
  • Store the library
  • Prime the second flow cell
  • Transfer to the new flow cell
  • Start a new sequencing run on MinKNOW

Method2

Method 3 Recover a library to replace on a washed flow cell

You will need to:

  • Pause sequencing on MinKNOW
  • Recover the library from the original flow cell
  • Flush the flow cell with flow cell Wash Mix
  • Reprime the washed flow cell
  • Reload the library onto the washed flow cell
  • Resume the sequencing run on MinKNOW

Method3

Use cases for each method

Method 1: Transfer a library between flow cells

  • For users wanting to continue generating data from the same library after a sequencing run has completed.
  • If a flow cell has failed within a few hours of sequencing, the library can be recovered and loaded onto a new flow cell to continue sequencing.

Method 2: Clean up and transfer a library between flow cells
  • For users wanting to continue generating data from the same library at a later date after a sequencing run has completed or if a second flow cell is not immediately available for transfer.
  • If the flow cell was not prepared with the compatible flow cell reagents for the library chemistry, the library can be cleaned up and transferred to a flow cell primed with the correct buffers.
    • For example, if a Kit 14 DNA library is loaded onto an R10.4.1 flow cell primed with Kit 9 flow cell priming reagents, the DNA library should be recovered, SPRI cleaned and loaded onto a flow cell primed with Kit 14 compatible reagents.
  • If a flow cell has failed within a few hours of sequencing, the library can be recovered and loaded onto a new flow cell to continue sequencing at a later date.

Method 3: Recover a library to replace on a washed flow cell
  • For users wanting to continue generating data from the same library on the same flow cell.
  • In cases where channels are mostly in the unavailable state and there is limited library, the flow cell can be washed to remove the blocks and reloaded with the same library.

Recommendations

  • We recommend a library can be transferred a maximum of 2-3 times as with each recovery, a small amount of library is lost which may impact sequencing output and pore occupancy.

  • Highly viscous libraries, typically generated using the Ultra-Long DNA Sequencing Kit V14 (SQK-ULK114) are difficult to recover from the flow cell, leading to variable results. We recommend only transferring between PromethION flow cells, if required.

  • For the "Transfer a library between flow cells" method, we recommend transferring your library between flow cells immediately. Long term storage is not recommended following this method. The library can remain on the original flow cell in the device or stored in an Eppendorf DNA LoBind tube on ice for up to two hours, if required.

  • Longer term storage of a cleaned up library is only recommended when following the "Clean up and transfer a library between flow cells" method. The library can be stored at 4°C for short term storage or repeated use, for example, re-loading flow cells between washes.

  • We recommend avoiding transferring short fragment libraries (<2 kb) where possible as they are less efficiently transferred between flow cells which may negatively affect sequencing results.

重要

Compatibility of this protocol

This protocol is compatible with the following:

  • All DNA sequencing kits
  • All Flow Cell Priming Kit expansions
  • All Sequencing Auxiliary Vials expansions
  • SFB Expansion (EXP-SFB001)
  • Flow Cell Wash Kit (EXP-WSH004 and EXP-WSH004-XL)
  • R9.4.1 and R10.4.1 flow cells (FLO-MIN106 and FLO-MIN114)

2. Equipment and consumables

材料
  • Flow Cell Priming Kit (EXP-FLP004)
  • Sequencing Auxiliary Vials V14 (EXP-AUX003)
  • Flow Cell Wash Kit (EXP-WSH004) or Flow Cell Wash Kit XL (EXP-WSH004-XL)
  • SFB Expansion (EXP-SFB001)

消耗品
  • MinION Flow Cell (FLO-MIN114)
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

装置
  • MinIONかGridION のデバイス
  • P1000 pipette and tips
  • P200 pipette and tips
  • P20 pipette and tips
  • Ice bucket with ice
  • ボルテックスミキサー
  • Hula mixer(緩やかに回転するミキサー)
  • Microfuge
  • Magnetic rack
  • Heating block
  • Qubit fluorometer (or equivalent)

Check your MinION flow cell

We highly recommend that you check the number of pores in your flow cell prior to starting a sequencing experiment. This should be done within 12 weeks of purchasing for MinION flow cells. Oxford Nanopore Technologies will replace any flow cell with fewer than 800 pores when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.

重要

We recommend having the suitable DNA sequencing kit protocol available when completing this procedure to ensure the correct flow cell priming reagents and volumes are used.

Flow cell priming reagents

Ensure the compatible flow cell priming reagents are used for your libraries. These are required for all methods and are available with our sequencing kits. If extra reagents are required, they can be found in the following expansion kits.

For libraries prepared using Kit 14 chemistry, please ensure you are using the following reagents:

  • Flow Cell Tether (FCT)
  • Flow Cell Flush (FCF)
  • For MinION flow cells only, we recommend using Bovine Serum Albumin (BSA)

Flow Cell Priming Kit (EXP-FLP004) contents: EXP-FLP004v2

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Flow Cell Flush FCF 6 Clear cap, light blue lable 8,000
Flow Cell Tether FCT 1 Purple 200

For libraries prepared using Kit 9, 10 or 11 chemistry, please ensure you are using the following reagents:

  • Flush Buffer (FB)
  • Flush Tether (FLT)

Flow Cell Priming Kit (EXP-FLP002) contents: FLP

Name Acronym Cap colour No. of vial Fill volume per vial (μl)
Flush Buffer FB Blue 6 1,170
Flush Tether FLT Purple 1 200

Short Fragment Buffer (SFB) and Elution Buffer (EB)

Short Fragment Buffer (SFB) and Elution Buffer (EB) are both required for the "Clean up and transfer a library between flow cells" method. Both reagents are found in our sequencing kits but extra reagents can be found in the below kits.

Short Fragment Buffer (SFB) is available in the SFB Expansion (EXP-SFB001).

SFB Expansion (EXP-SFB001) contents:

2020 03 25 SFB expansion v1 DS

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Short Fragment Buffer SFB Grey 4 1,800

Elution Buffer (EB) is available in the Sequencing Auxiliary Kit.

For libraries prepared using Kit 14 chemistry, please ensure you are using the following kit which also includes the flow cell priming reagents:

Sequencing Auxiliary Vials V14 (EXP-AUX003) contents:

EXP-AUX003 bottles

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Elution Buffer EB Black 2 500
Sequencing Buffer SB Red 2 700
Library Solution LIS White cap, pink label 2 600
Library Beads LIB Pink 2 600
Flow Cell Flush FCF Light blue label 2 8,000
Flow Cell Tether FCT Purple 2 200

For libraries prepared using the Kit 10 or 11 chemistry, please use the following kit:

Sequencing Auxiliary Vials (EXP-AUX002) contents:

EXP-AUX110 kit contents

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Sequencing Buffer SBII Red 4 500
Loading Solution LS Pink sticker on cap 2 360
Elution Buffer EB Black 2 200
Loading Beads LBII Pink 2 360

For libraries prepared using Kit 9 chemistry, please use the following kit:

Sequencing Auxiliary Vials (EXP-AUX001) contents:

EXP AUX001 v1 DS

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Sequencing Buffer SQB Red 6 300
Elution Buffer EB Black 2 200
Loading Beads LB Pink 2 360

AMPure XP Beads (AXP)

For the "Clean up and transfer a library between flow cells" method, AMPure XP Beads (AXP) are required. These are available in many of our kits where the DNA library undergoes a clean up step. However, if extra beads are required, we recommend purchasing more from Beckman Coulter, Inc. (A63880).

Flow Cell Wash Kit

The Flow Cell Wash Kit is required for the "Recover a library to replace on a washed flow cell" method.

Flow Cell Wash Kit contents (EXP-WSH004): EXP-WSH004 kit contents v2

Contents Volume (µl) No. of tubes No. of uses
Wash Mix (WMX) 15 1 6
Wash Diluent (DIL) 1,300 2 6
Storage Buffer (S) 1,600 2 6

3. Transfer a library between MinION flow cells

材料
  • For Kit 14 libraries, Flow Cell Flush (FCF) and Flow Cell Tether (FCT)
  • For Kit 9, 10 and 11 libraries, Flush Buffer (FB) and Flush Tether (FLT)

消耗品
  • MinION Flow Cell (FLO-MIN114)
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

装置
  • MinIONかGridION のデバイス
  • MinIONとGridIONのFlow Cell ライトシールド
  • P1000 pipette and tips
  • P200 pipette and tips

Preparation to transfer a library to a second flow cell

  • This protocol assumes that the original flow cell has been loaded with a DNA library prepared in accordance with the suitable protocol.
  • The aim is to prepare the second flow cell and recover the library from the original flow cell for immediate transfer.
  • Data acquisition in MinKNOW should be stopped during the recovery and transfer procedure.
  • After the second flow cell has been primed, the library can be recovered and immediately transferred to the second flow cell.
重要

We recommend keeping the light shield on the original flow cell when recovering the library.

The light shield should be installed on the second flow cell as soon as the library has been loaded for optimal sequencing output.

Stop the sequencing run for the original flow cell on MinKNOW by clicking 'Stop'.

Min 2

Thaw and prepare the flow cell priming mix according to the "Priming and loading the SpotON flow cell" section of the suitable protocol.

Open the MinION or GridION device lid and slide the second flow cell under the clip. Press down firmly on the priming port cover to ensure correct thermal and electrical contact.

Note: We recommend leaving the original flow cell in the device and inserting the second flow cell in a free position, where possible. If a free position is not available on the device:

  1. Remove the original flow cell and place in the tray the flow cell was delivered in. Ensure the flow cell remains as level as possible to prevent waste fluid leaking out of the waste port.
  2. Insert the second flow cell in the device for priming.
  3. Library recovery can be completed from the original flow cell in the plastic tray.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

To prime the second flow cell, slide the priming port cover clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。

  1. P1000ピペットを200 µ Lに設定して下さい。
  2. ピペットの先端をプライミングポートに差し込みます。
  3. 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。

(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。

Flow Cell Loading Diagrams Step 03 V5_JP

Load 800 µl of the priming mix into the second flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

Complete the flow cell priming for the second flow cell:

  1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
  2. Load 200 µl of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the introduction of air bubbles.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5

To prepare the original flow cell for library recovery, slide open the priming port cover and lift open the SpotON sample port cover.

transfer between min fc

Set a pipette to 75 µl and fully depress the pipette before inserting the tip into the SpotON port of the original flow cell. Slowly aspirate to recover the DNA library from the flow cell.

Note: Insert the pipette tip to the point where it is touching the liquid in the flow cell. Do not insert the tip too far into the port as this will impact removal.

The recovered library may appear slightly yellow and not all the library loading beads (LB, LBII, LIB) will be fully recovered but this will not impact library recovery and transfer.

Add the recovered DNA library to the second flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

transfer between min fc1

Gently replace the SpotON sample port cover of the second flow cell, making sure the bung enters the SpotON port and close the priming port.

Flow Cell Loading Diagrams Step 8

Flow Cell Loading Diagrams Step 9

重要

最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。

ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。

ライトシールドを以下のようにフローセルに設置して下さい。

  1. ライトシールドの先端を慎重にクリップに当てます。 (注: ライトシールドをクリップの下に無理に押し込まないでください。

  2. ライトシールドをフローセルにゆっくりと下ろします。ライトシールドは、フローセルの上部全体を覆うようにSpotONカバーの周囲に取り付けます。

J2264 - Light shield animation Flow Cell FAW optimised-Japanese step10

注意

MinIONフローセルライトシールドは、フローセルに固定されていないため、取り付け後の取り扱いには注意が必要です。

Start a new sequencing run on MinKNOW for the second flow cell.

最終ステップ

Using the suitable protocol for your DNA library, continue with the "Sequencing and data analysis" section to complete the experiment.

The original flow cell can be returned to Oxford Nanopore for recycling if no longer required.

Instructions for returning flow cells can be found here.

4. Clean up and transfer a library between MinION Flow Cells

材料
  • For Kit 14 libraries, Flow Cell Flush (FCF), Flow Cell Tether (FCT), Library Solution (LIS), Library Beads (LIB), and Sequencing Beads (SB)
  • For Kit 9, 10 and 11 libraries, Flush Buffer (FB), Flush Tether (FLT) Loading Beads/II (LB/LBII), Loading Solution (LS), and Sequencing Buffer/II (SQB/SBII),
  • AMPure XP Beads (AXP)
  • Elution Buffer (EB)
  • Short Fragment Buffer (SFB)

消耗品
  • MinION Flow Cell (FLO-MIN114)
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Qubit™ Assay Tubes (Invitrogen, Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen, Q32851)

装置
  • MinIONかGridION のデバイス
  • MinIONとGridIONのFlow Cell ライトシールド
  • P1000 pipette and tips
  • P200 pipette and tips
  • ボルテックスミキサー
  • Hula mixer(緩やかに回転するミキサー)
  • Microfuge
  • Magnetic rack
  • Heating block
  • Qubit fluorometer (or equivalent)

Preparation to clean up a library before transfer to a second flow cell

  • The aim is to recover and clean up your library before priming the second flow cell for loading the recovered library at a later date.
  • The cleaned up library can be stored at 4°C for short term storage or repeated use, for example, re-loading flow cells between washes.
  • Data acquisition in MinKNOW should be stopped during the recovery and transfer procedure.
重要

We recommend keeping the light shield on the original flow cell when recovering the library.

The light shield should be installed on the second flow cell as soon as the library has been loaded for optimal sequencing output.

Thaw the kit components at room temperature and prepare as indicated by the table below:

Reagent 1. Thaw at room temperature 2. Mix well by vortexing 3. Briefly spin down 4. Keep on ice
AMPure XP Beads (AXP) X X Keep at room temperature
Short Fragment Buffer (SFB)
Elution Buffer (EB)

AMPure XP Beads from an Oxford Nanopore sequencing kit require thawing as they are stored with the kit at -20°C.

Stop the sequencing run for the original flow cell on MinKNOW by clicking 'Stop'.

Min 2

To prepare the original flow cell for library recovery, slide open the priming port cover and lift open the SpotON sample port cover.

transfer between min fc

Set a pipette to 75 µl and fully depress the pipette before inserting the tip into the SpotON port of the original flow cell. Slowly aspirate to recover the DNA library from the flow cell.

Note: Insert the pipette tip to the point where it is touching the liquid in the flow cell. Do not insert the tip too far into the port as this will impact removal.

The recovered library may appear slightly yellow and not all the library loading beads (LB, LBII, LIB) will be fully recovered but this will not impact library recovery and transfer.

Transfer the recovered library to a fresh 1.5 ml Eppendorf DNA LoBind tube and store on ice.

The original flow cell can be removed from the MinION or GridION device by sliding the flow cell from under the clip.

The original flow cell can be returned to Oxford Nanopore for recycling if no longer required.

Instructions for returning flow cells can be found here.

Resuspend the AMPure XP Beads (AXP) by vortexing.

Add 300 µl of resuspended AMPure XP Beads (AXP) to the recovered library and mix by flicking.

Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.

チューブをスピンダウンした後、マグネットラック上で、上清が無色透明になるまで置きます。チューブを磁石の上に置いたまま、上清をピペットで取り除いていきます。ピペットを使用してエタノールを除去し 、 廃棄してください。

Wash the beads by adding 150 µl of Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.

Spin down and place the tube back on the magnet. Pipette off any residual supernatant.

Remove the tube from the magnetic rack and resuspend the pellet in 13 µl of Elution Buffer (EB).

Spin down and incubate for 10 minutes at room temperature. For high molecular weight DNA, incubating at 37°C can improve recovery of long fragments.

溶出液が無色透明になるまで、少なくとも1分間マグネット上でビーズをペレット化します。

Remove and retain 13 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

CHECKPOINT

Quantify 1 µl of eluted sample using a Qubit fluorometer. If the recovered library is below the detection level of the Qubit dsDNA HS Assay, we do not recommend continuing to load the flow cell.

Note: Library concentration of a recovered library will not be as high as the initial library, but the best results will be achieved by loading as close to the requirements as possible.

The library can be stored at 4°C.

Thaw and prepare the flow cell priming mix according to the "Priming and loading the SpotON flow cell" section of the suitable protocol.

Open the MinION or GridION device lid and slide the second flow cell under the clip. Press down firmly on the priming port cover to ensure correct thermal and electrical contact.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

To prime the second flow cell, slide the priming port cover clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。

  1. P1000ピペットを200 µ Lに設定して下さい。
  2. ピペットの先端をプライミングポートに差し込みます。
  3. 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。

(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。

Flow Cell Loading Diagrams Step 03 V5_JP

Load 800 µl of the priming mix into the second flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

Thoroughly mix the contents of the Library Beads/Loading Beads by pipetting.

重要

The Library Beads/Loading Beads tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the recovered library for loading according to the "Priming and loading the SpotON flow cell" section of the suitable protocol to ensure you are using the correct reagents and volumes.

For Kit 14 chemistry:

Reagent Volume per flow cell
Sequencing Buffer (SB) 37.5 µl
Library Beads (LIB) mixed immediately before use, or Library Solution (LIS), if using 25.5 µl
Recovered DNA library 12 µl
Total 75 µl

Complete the flow cell priming for the second flow cell:

  1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
  2. Load 200 µl of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the introduction of air bubbles.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5

調製したライブラリーは、ロードする直前にピペッティング混合して下さい。

Add the recovered DNA library to the second flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

transfer between min fc1

Gently replace the SpotON sample port cover of the second flow cell, making sure the bung enters the SpotON port and close the priming port.

Flow Cell Loading Diagrams Step 8

Flow Cell Loading Diagrams Step 9

重要

最適なシークエンス出力を得るために、ライブラリーがロードされたすぐにライトシールドをフローセルに取り付けてください。

ライブラリーがフローセル上にある状態では(ウォッシングやリロードのステップを含める)、フローセルにライトシールドを付けたままにしておくことを推奨します。ライトシールドは、ライブラリーがフローセルから除去された時点で取り外すことができます。

ライトシールドを以下のようにフローセルに設置して下さい。

  1. ライトシールドの先端を慎重にクリップに当てます。 (注: ライトシールドをクリップの下に無理に押し込まないでください。

  2. ライトシールドをフローセルにゆっくりと下ろします。ライトシールドは、フローセルの上部全体を覆うようにSpotONカバーの周囲に取り付けます。

J2264 - Light shield animation Flow Cell FAW optimised-Japanese step10

注意

MinIONフローセルライトシールドは、フローセルに固定されていないため、取り付け後の取り扱いには注意が必要です。

Start a new sequencing run on MinKNOW for the second flow cell.

最終ステップ

Using the suitable protocol for your DNA library, continue with the "Sequencing and data analysis" section to complete the experiment.

5. Recover a library to replace on a washed MinION flow cell

材料
  • For Kit 14 libraries, Flow Cell Flush (FCF) and Flow Cell Tether (FCT)
  • For Kit 9, 10 and 11 libraries, Flush Buffer (FB) and Flush Tether (FLT)
  • Flow Cell Wash Kit (EXP-WSH004)

消耗品
  • Bovine Serum Albumin (BSA) (50 mg/ml) (e.g Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
  • 1.5 ml Eppendorf DNA LoBind tubes

装置
  • MinIONかGridION のデバイス
  • P1000 pipette and tips
  • P200 pipette and tips
  • ボルテックスミキサー
  • Microfuge
  • Ice bucket with ice

Preparation to recover and wash a library to replace on the same flow cell

  • This protocol assumes that the original flow cell has been loaded with a DNA library prepared in accordance with the suitable protocol.
  • The aim is to recover the library and wash the flow cell to reload the recovered library.
  • Data acquisition in MinKNOW can be paused during the procedure.
重要

We recommend keeping the light shield on the flow cell during library recovery, washing and reloading for optimal sequencing output.

Pause the sequencing run for the original flow cell on MinKNOW by clicking 'Pause'.

Screenshot 2023-01-23 115409

Place the tube of Wash Mix (WMX) on ice. Do not vortex the tube.

Thaw one tube of Wash Diluent (DIL) at room temperature and mix the contents of Wash Diluent (DIL) thoroughly by vortexing. Then spin down briefly and place on ice.

To prepare the original flow cell for library recovery, slide open the priming port cover.

Flow Cell Loading Diagrams Step 2 (3)

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

重要

Be aware that the library is removed from the priming port as a larger volume and expect to see the fluid in the waste channel to move back.

Set a pipette to 150 µl and fully depress the pipette before inserting the tip into the priming port of the original flow cell. Slowly aspirate to recover the DNA library from the flow cell.

Note: The recovered library may appear slightly yellow and not all the library loading beads (LB, LBII, LIB) will be fully recovered but this will not impact library recovery and transfer.

recovering library step 6

Transfer the recovered library to a fresh 1.5 ml Eppendorf DNA LoBind tube and store on ice.

In a fresh 1.5 ml Eppendorf DNA LoBind tube, prepare the following Flow Cell Wash Mix:

Reagent Volume per flow cell
Wash Mix (WMX) 2 μl
Wash Diluent (DIL) 398 μl
Total 400 μl

Mix well by pipetting, and place on ice. Do not vortex the tube.

重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Close the priming port and SpotON sample port cover, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Rotate the flow cell priming port cover clockwise so that the priming port is visible.

Flow Cell Loading Diagrams Step 2 (3)

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

Slowly load 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.
  4. Set a timer for a 5 minute incubation.

Loading wash mix 200ul slow min grid

Once the 5 minute incubation is complete, carefully load the remaining 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take the remaining 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.

Loading wash mix 200ul slow min grid

Close the priming port and wait for 1 hour.

Flow Cell Loading Diagrams Step 9

重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Close the priming port and SpotON sample port cover, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Thaw and prepare the flow cell priming mix according to the "Priming and loading the SpotON flow cell" section of the suitable protocol.

フローセルのプライミングポートカバーを時計方向にスライドさせ、プライミングポートを開きます。

Flow Cell Loading Diagrams Step 2_JP

重要

フローセルからバッファーを引き上げる際には注意してください。20~30μl以上は除去せず、ポアのアレイ全体が常にバッファーで覆われていることを確認して下さい。アレイに気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。

プライミングポートを開けた後に、カバーの下に小さな気泡がないかを確認して下さい。気泡を取り除くために少量の液を引き上げます。

  1. P1000ピペットを200 µ Lに設定して下さい。
  2. ピペットの先端をプライミングポートに差し込みます。
  3. 目盛りが220-230 ulと表示されるまでダイヤルを回して、20-30 ulを吸い上げるか、少量のバッファーがピペットの先端に入るのが見えるまでダイヤルを回します。

(注: プライミングポートからセンサーアレイ全体にバッファーがあることを確認してください。

Flow Cell Loading Diagrams Step 03 V5_JP

Load 800 µl of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

Complete the flow cell priming:

  1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
  2. Load 200 µl of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the introduction of air bubbles.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5

Bring the recovered library up to room temperature and load 150 µl to the flow cell via the SpotON port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

Picture4

SpotONサンプルポートカバーをゆっくりと元に戻し、バング(カバーの先)がSpotONポートに入ることを確認し、プライミングポートを閉じます。

Step 8 update_JP

Flow Cell Loading Diagrams Step 9_JP

重要

If the light shield was removed during the washing step, the light shield should be replaced on the flow cell as soon as library is loaded for optimal sequencing output.

ライトシールドを以下のようにフローセルに設置して下さい。

  1. ライトシールドの先端を慎重にクリップに当てます。 (注: ライトシールドをクリップの下に無理に押し込まないでください。

  2. ライトシールドをフローセルにゆっくりと下ろします。ライトシールドは、フローセルの上部全体を覆うようにSpotONカバーの周囲に取り付けます。

J2264 - Light shield animation Flow Cell FAW optimised-Japanese step10

注意

MinIONフローセルライトシールドは、フローセルに固定されていないため、取り付け後の取り扱いには注意が必要です。

Restart the sequencing run on MinKNOW.

最終ステップ

Using the suitable protocol for your DNA library, continue with the "Sequencing and data analysis" section to complete the experiment.

Used flow cells that are no longer required can be returned to Oxford Nanopore for recycling.

Instructions for returning flow cells can be found here.

6. DNA/RNA抽出、およびライブラリ調製時の問題点

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

サンプルの品質が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
DNAの純度が低い(DNAのOD 260/280のナノドロップ測定値が1.8未満およびOD 260/230が2.0~2.2未満) DNA抽出で必要な純度が得られていない 夾雑物の影響は、 Contaminants に示されています。コンタミネーションをもたらさないために別の抽出方法extraction method をお試しください。.

追加のSPRIクリーンアップステップの実施を検討して下さい。
低いRNA インテグリティー(RNA Integrity Number: <9.5 RIN、またはrRNAバンドがゲル上でスメアになっている) 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、 DNA/RNA Handling のページをご覧ください。
RNAのフラグメントが予想より短い 抽出中にRNAが分解された 別のRNA抽出方法 RNA extraction methodを試してください。 RINの詳細については、 RNA Integrity Number の資料を参照してください。詳細については、DNA/RNA Handling のページをご覧ください。

RNAを扱う際には、RNaseフリーの環境で作業し、実験器具もRNaseフリーにしておくことをお勧めします。

AMPureビーズクリーンアップ後のDNA回収率が低い

問題点 この問題が生じた可能性のある原因 解決策とコメント
低回収率 AMPureビーズとサンプルの比率が予想していたのよりも低いことによるDNAの損失 1. AMPureビーズはすぐに沈降するため、サンプルに添加する前によく再懸濁させてください。

2. AMPureビーズ対サンプル比が0.4:1未満の場合、どのようなサイズのDNA断片でもクリーンアップ中に失われます。
低回収率 DNA断片が予想よりも短い サンプルに対するAMPureビーズの比率が低いほど、短い断片に対する選択が厳しくなります。 アガロースゲル(または他のゲル電気泳動法)上でインプットDNAの長さを設定してから、使用するAMPureビーズの適切な量を計算してください。 SPRI cleanup
エンドプレップ後の収率が低い 洗浄ステップで使用したエタノール濃度が低い(70%未満)。 エタノールが70%未満の場合、DNAは洗浄中にビーズから溶出されます。必ず正しい濃度(%)のエタノールを使用してください。

7. シークエンス実行中の問題

以下は、最もよく起こる問題のリストであり、いくつかの原因と解決策が提案されています。

Nanopore Community Support セクションにFAQをご用意しています。

ご提案された解決策を試しても問題が解決しない場合は、テクニカルサポートに電子メール (support@nanoporetech.com)または LiveChat in the Nanopore Communityでご連絡ください。

シークエンス開始時のポアがフローセルチェック後よりも少ない場合

問題点 予想される原因 解決策とコメント
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ナノポアアレイに気泡が入ってしまった。 フローセルチェックをした後、フローセルをプライミングする前に、プライミングポート付近の気泡を取り除くことが必要です。 気泡を取り除かないと、気泡がナノポアアレイに移動し、空気に触れたたナノポアが不可逆的なダメージを負った可能性がある。これを防ぐための最適な方法が、 this videoで紹介されています。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 フローセルがデバイスに正しく挿入されていない。 シークエンスランを停止し、フローセルをシークエンス装置から取り出します。次に再度フローセルを挿入し、装置にしっかりと固定され、目標温度に達していることを確認します。GridIONやPromethIONの場合は別のフローセルの位置をお試しください。
MinKNOWのフローセルチェックで確認されたポアの数より、シークエンシング開始時のポア数が少なく表示された。 ライブラリー内の汚染物質がポアを失活させたり塞いだりしている。 フローセルチェックの際のポア数は、フローセル保存バッファー中のQC用のDNA分子を用いて計測されます。シークエンシングの開始時は、ライブラリ自体を使用してアクティブなポア数を推定します。このため、フローセルチェックとRun開始時のポア数は、約10%程度の変動が起こります。シークエンシング開始時に報告されたポアの数が大幅に減少している場合は、ライブラリー中の汚染物質がメンブレンを損傷していたり、ポアをブロックしている可能性があります。インプット材料の純度を向上させるために、別のDNA/RNA抽出または精製方法が必要となる場合があります。コンタミネーションの影響は、Contaminants Know-how pieceを参照にして下さい。夾雑物を除去するために別の抽出方法extraction method をお試しください。

MinKNOWのスクリプトに問題

問題点 この問題が生じた可能性のある原因 解決策とコメント
MinKNOW に 「Script failed」と表示されている"
コンピューターを再起動し、MinKNOWを再起動します。問題が解決しない場合は MinKNOW log files MinKNOWログファイルを収集し 、テクニカルサポートにご連絡ください。他のシークエンシングデバイスをお持ちでない場合は、 フローセルとロードしたライブラリーを4℃で保管することをお勧めします。詳細な保管方法については、テクニカルサポートにお問い合わせください。

ポア占有率が40%未満

問題点 予想される原因 解決策とコメント
ポアの占有率が40%以下 フローセルに十分なライブラリーがロードされていなかった。 シークエンシングライブラリーを正確に濃度測定し、適切な容量がフローセルにロードされていることを確認してください(詳しくはそれぞれのプロトコールをご覧ください)。 ロードする前にライブラリーを定量し、 Promega Biomath Calculatorなどのツールを使用してfmolを計算してください。[dsDNA: µ g to fmol]を選択してください。
ポア占有率が0に近い Ligation Sequencing Kitを使用したが、シークエンシングアダプターはDNAにライゲーションしなかった。 シークエンシングアダプターのライゲーションステップでは、必ずNEBNext Quick Ligation Module(E6056)とOxford Nanopore Technologies Ligation Buffer(LNB、シークエンスキットに付属されています。)を使用し、各試薬の量を適切に使用してください。サードパーティ試薬の完全性をテストするために、Lambdaのコントロールライブラリーを調製することもできます。
ポア占有率が0に近い シークエンシングアダプターライゲーション後の洗浄工程で、LFBまたはSFBの代わりにエタノールを使用してしまった。 エタノールはシークエンシングアダプター上のモータータンパク質を変性させる可能性があります。シークエンシングアダプターのライゲーション後にLFBまたはSFBバッファーを使用したことを確認して下さい。
ポア占有率が0に近い フローセルにテザーがない テザーはフローセルのプライミング時に追加されます(キット9、10、11はFLTチューブ、キット14はFTUを使用。ウルトラロングのDNAキットにはFTUを使用。) プライミングの前に、FLT/FCT/FTUがバッファー(キット9、10、11はFB、キット14はFCF)に添加されていることを確認してください。

予想より短いリード長

問題点 予想される原因 解決策とコメント
予想より短いリード長 DNAサンプルの不要な断片化 読み取り長はサンプルDNA断片の長さを反映します。サンプルDNAは、抽出およびライブラリー調製中の操作で断片化した可能性があります。

1. 抽出の最適な方法については、Extraction Methods の抽出方法を参照してください。

2. ライブラリー調製に進む前に、アガロースゲル電気泳動で、サンプルDNAのフラグメント長の分布を確認してください。 DNA gel2 上の画像では、サンプル1は高分子量ですが、サンプル2は断片化されています。

3. ライブラリー調製中は、試薬を混合するためのピペッティングやボルテックス操作は、プロトコルで指示がないかぎり行わないでください。

利用できないポアの割合が多い場合

問題点 予想される原因 解決策とコメント
利用できないポアの割合が大きい(チャンネルパネルとポアのアクティブポートで青く表示されています)

image2022-3-25 10-43-25 上のアクティブなポアの図は、時間の経過とともに「利用できない」ポアの割合が増加していることを示しています。
サンプル内に不純物が含まれている 一部のポアに吸着する不純物は、MinKNOWに組み込まれたポアのブロック解除機能によって、ポアから除去することができます。 このステップが完了すると、ポアの状態が「sequencing pore」に戻ります。利用できないポアの部分が多いか、増加した場合:

1.Flow Cell Wash Kit nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) を用いて、ヌクレアーゼ洗浄を 行うことができます。又は
2. PCRを数サイクル実行してサンプルDNAの量を増やし、サンプルDNAに含まれる問題の不純物が相対的に減る(希釈される)ようにします。

Inactiveのポアの割合が高い

問題点 予想される原因 解決策とコメント
利用できない(inactive/unavailable)ポアの割合が高い(チャネルパネルとポアアクティブポートでは水色で表示されています)ポアまたは膜に損傷が起きてしまった。 気泡がフローセルに混入した。 フローセルのプライミングやライブラリーのロードで気泡が入ると、ポアに不可逆的なダメージを与える可能性があります。 推奨の操作方法については、Priming and loading your flow cell のビデオをご覧ください。
利用できないポアの割合が多い場合 サンプルDNAに含まれる不純物 既知の化合物問題で、サンプルDNAに多糖類が含まれた事で、植物のゲノムDNAと結合しポアをブロックした。

1. 植物葉DNA抽出法 Plant leaf DNA extraction methodをご参照ください。
2. QIAGEN PowerClean Pro キットを使用してクリーンアップして下さい。
3. QIAGEN REPLI-g kit.キットを使用して、元のgDNAサンプルで全ゲノム増幅を実行します。
利用できないポアの割合が多い場合 サンプル内に不純物が含まれている 不純物の影響は、 Contaminants の ノウハウを参照して下さい。 サンプルDNAに不純物を残留させないために別の抽出方法をお試しください。

温度変動

問題点 予想される原因 解決策とコメント
温度変動 フローセルとデバイスの接続が途切れている。 フローセルの背面にある金属プレートを覆っているヒートパッドがあることを確認してください。 フローセルを再度挿入し、コネクターピンがデバイスにしっかりと接触していることを確認するために軽く押してください。問題が解決しない場合は、テクニカルサービスにご連絡してください。

目標温度に到達しない場合

問題点 予想される原因 解決策とコメント
MinKNOWが "Failed to reach target temperature "(目標温度に達しなかった)と表示する。" 装置が通常の室温より低い場所、または風通しの悪い場所(排気が出来ない場所)に置かれた時にフローセルが過熱してします。 MinKNOWでは、フローセルが目標温度に到達するまでの既定の時間枠があります。時間枠を超えると、エラーメッセージが表示され、シークエンシング実験が続行されます。しかし、不適切な温度でシークエンスを行うと、スループットが低下し、qスコアが低下する可能性があります。シークエンシングデバイスが風通しの良い室温に置かれていることを確認して、MinKNOW再スタートしてください。MinION Mk 1Bの温度制御の詳細については、FAQ を参照してください。

Last updated: 12/13/2024

Document options

MinION