Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114)
- Home
- Documentation
- Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114)
MinION: Protocol
Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) V DCS_9187_v114_revJ_12Dec2024
The PCR-free protocol for full-length cDNA offers:
- Higher yields than traditional cDNA synthesis
- Analysis of splice variants & fusion transcripts
- Compatibility with R10.4.1 flow cells
For Research Use Only
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
- 1. Overview of the protocol
- 2. Equipment and consumables
- 3. Requisitos de sistema y programas informáticos
Library preparation
- 4. Reverse transcription and strand-switching
- 5. RNA degradation and second strand synthesis
- 6. cDNA repair and end-prep
- 7. Adapter ligation and clean-up
- 8. Cebado y carga de la celda de flujo MinION/GridION
Sequencing and data analysis
- 9. Data acquisition and basecalling
- 10. Análisis posterior (1)
- 11. Reutilización y devolución de celdas de flujo
Troubleshooting
Descripción general
The PCR-free protocol for full-length cDNA offers:
- Higher yields than traditional cDNA synthesis
- Analysis of splice variants & fusion transcripts
- Compatibility with R10.4.1 flow cells
For Research Use Only
1. Overview of the protocol
Direct cDNA Sequencing V14 with SQK-LSK114 features
This protocol is recommended for users who:
- Are interested in exploring novel RNA biology.
- Are looking for splice variant and fusion transcript analysis.
- Do not wish to use PCR.
- Wish to preserve quantitative information in samples likely to be impacted by PCR bias.
- Would like full-length cDNA strands.
- Want to achieve median raw read accuracy of Q20+ (99%) and above.
- Want to optimise their sequencing experiment for output.
Introduction to the Direct cDNA sequencing protocol
This protocol describes how to carry out sequencing of cDNA using a reverse transcription and stand-switching method and the Ligation Sequencing Kit V14 (SQK-LSK114).
This protocol requires the use of three oligo primers to be ordered from a third-party (e.g. IDT):
Oligo | Sequence (5' to 3') |
---|---|
VN Primer | /5phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN |
Strand-switching Primer | TTTCTGTTGGTGCTGATATTGCTmGmGmG |
PR2 Primer | /5Phos/TTTCTGTTGGTGCTGATATTGC |
Note: mG = 2' O-Methyl RNA bases. |
- The VN Primer will anchor to the RNA Poly(A)+ tail and prime the first strand synthesis.
- The Strand-switching Primer will anneal to the non-template nucleotides (C’s) of the novel cDNA strand generated from the first strand synthesis, enabling strand switching.
- Following RNA degradation, the PR2 Primer will prime the second strand synthesis of the cDNA sample.
Using this strand-switching method allows for high yields of cDNA library generation from RNA, while also selecting for full-length transcripts.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Order the three oligo primers from a third-party
- Extract your RNA, and check its length, quantity and purity. Alternatively, you can start with already-prepared cDNA. The quality checks performed during the protocol are essential in ensuring experimental success
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data Check your flow cell to ensure it has enough pores for a good sequencing run
Library preparation
You will need to:
- Using the strand-switching protocol, prepare full-length cDNAs from Poly(A)+ RNA
- Ligate sequencing adapters to the cDNA
- Prime the flow cell, and load your cDNA library into the flow cell
Sequencing and analysis
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- (Optional): Start the EPI2ME software and select a workflow for further analysis, e.g. Fastq yeast transcriptome analysis
ATENCIÓN
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes.
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes. Pychopper currently miss-classsifies The reads generated with Direct cDNA Sequencing are not being classified correctly in the analysis workflow, leading to ≥80% data loss of full-read transcripts following analysis with wf-transcriptomes.
Note: Experienced users may be able to disable Pychopper during wf-transcriptomes analysis setup to circumvent this issue using the infomation available in the wf-transcriptomes GitHub page and the Pychopper GitHub page. Please note that deviating from the standard analysis settings can result in changes to the analysis output.
IMPORTANTE
Compatibility of this protocol
This protocol should only be used in combination with:
- Ligation Sequencing Kit V14 (SQK-LSK114)
- R10.4.1 flow cells (FLO-MIN114)
- Flow Cell Wash Kit (EXP-WSH004)
2. Equipment and consumables
Material
- 100 ng Poly(A)+ RNA OR 1 µg of total RNA
- Ligation Sequencing Kit V14 (SQK-LSK114)
Consumibles
- User-supplied VN Primer, 2 µM
- User-supplied Strand-Switching Primer, 10 µM
- User-supplied PR2 Primer, 10 µM
- NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB E7180S or E7180L) (módulo de acompañamiento NEBNext de secuenciación por ligación para Oxford Nanopore Technologies®) Como alternativa, se pueden utilizar los siguientes productos de NEBNext®:
- NEBNext Ultra II End repair/dA-tailing Module (NEB E7546)
- NEBNext Quick Ligation Module (NEB E6056) (Módulo de ligación rápida)
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml thin-walled PCR tubes
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Etanol al 80 % recién preparado con agua sin nucleasas
- 10 mM dNTP solution (e.g. NEB N0447)
- LongAmp Taq 2X Master Mix (e.g. NEB M0287)
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
- RNase Cocktail Enzyme Mix (ThermoFisher, cat # AM2286)
- (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
Instrumental
- Mezclador Hula (mezclador giratorio suave)
- Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
- Microcentrífuga
- Mezclador vórtex
- Termociclador
- Cubeta con hielo
- Temporizador
- Pre-chilled freezer block at -20° C for 200 µl tubes (e.g. Eppendorf cat # 022510509)
- Pipeta y puntas P1000
- Pipeta y puntas P200
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- Pipeta y puntas P2
Equipo opcional
- Fluorímetro Qubit (o equivalente para el control de calidad)
For this protocol, you will need 100 ng Poly(A)+ RNA or 1 µg of total RNA.
If using alternative cDNA preparation methods, start the protocol with 70–200 fmol of pre-prepared cDNA at the cDNA repair and end-prep step.
This protocol requires primer oligos to be ordered separately:
Oligo | Sequence (5' to 3') | Purity recommended | Dilution required |
---|---|---|---|
VN Primer | /5phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN | HPLC | 2 µM |
Strand-switching Primer | TTTCTGTTGGTGCTGATATTGCTmGmGmG | HPLC | 10 µM |
PR2 Primer | /5Phos/TTTCTGTTGGTGCTGATATTGC | HPLC | 10 µM |
Note: mG = 2' O-Methyl RNA bases. |
Note: Please ensure your primer oligos are ordered at HPLC purity level for optimal results. If ordering from IDT, the primer oligos will need to be ordered at a minimum scale of 100 nmole to enable HPLC purification.
Muestra inicial de ARN
Es importante que la muestra inicial de ARN posea la cantidad y calidad requerida. Usar demasiado ARN, poco o de mala calidad (p. ej., que esté muy fragmentado o que contenga contaminantes químicos), puede afectar a la preparación de la biblioteca.
Para más información sobre cómo utilizar ARN como muestra inicial, consulte los enlaces a continuación.
- Polyadenylation of non-poly(A) transcripts using E. coli poly(A) polymerase
- RNA contaminants
- RNA stability
- RNA Integrity Number (RIN)
- Enrichment of polyadenylated RNA molecules
Estos documentos pueden encontrarse en la página DNA/RNA Handling page.
NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing
For customers new to nanopore sequencing, we recommend buying the NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7180S or E7180L), which contains all the NEB reagents needed for use with the Ligation Sequencing Kit.
Please note, for this protocol, NEBNext FFPE DNA Repair Mix and NEBNext FFPE DNA Repair Buffer are not required.
Reactivos de otros fabricantes
Oxford Nanopore Technologies ha probado y recomienda el uso de todos los reactivos de otros fabricantes citados en este protocolo. No se han evaluado otras alternativas.
Recomendamos preparar estos reactivos siguiendo las instrucciones del fabricante.
IMPORTANTE
A fin de garantizar un elevado rendimiento de ligación del adaptador Ligation Adapter (LA), recomendamos el uso del tampón Ligation Buffer (LNB) incluido en el kit Ligation Sequencing Kit V14, en lugar del tampón de ligasa de otros fabricantes.
Contenido del kit Ligation Sequencing Kit V14 (SQK-LSK114)
Nota: Hemos cambiando el formato de nuestros kits; hemos sustituido algunos de los viales de un solo uso por botellas de mayor contenido.
Formato de tubos monouso
Formato en botella
Nota: este producto contiene un reactivo, AMPure XP, fabricado por Beckman Coulter Inc., que puede conservarse con el kit a -20 °C sin perjudicar su estabilidad.
Nota: la muestra de control de ADN (DCS) es un amplicón estándar de 3,6 kb, que mapea el extremo 3' del genoma Lambda.
3. Requisitos de sistema y programas informáticos
Requisitos informáticos para el MinION Mk1B
Para secuenciar con el MinION Mk1B es necesario tener un ordenador o portátil de alto rendimiento, que pueda soportar la velocidad de adquisición de datos. Encontrará más información en el documento MinION Mk1B IT Requirements.
Requisitos informáticos para el MinION Mk1C
El MinION Mk1C contiene ordenador y pantalla integrados, lo que elimina la dependencia de cualquier accesorio para generar y analizar datos de nanoporos. Encontrará más información en el documento MinION Mk1C IT Requirements.
MinION Mk1D IT requirements
Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.
Programas informáticos para secuenciar por nanoporos
MinKNOW
El programa MinKNOW controla el dispositivo de secuenciación por nanoporos, genera los datos de secuenciación e identifica las bases en tiempo real. Se utiliza para secuenciar y demultiplexar las muestras, cuando estas contienen códigos.
Para ponerlo en funcionamiento, consulte el protocolo MinKNOW en la sección correspondiente.
EPI2ME (opcional)
La plataforma en la nube EPI2ME realiza análisis adicionales de las bases identificadas, por ejemplo la alineación con el genoma lambda, identificación de especies mediante código de barras (barcoding) o clasificación taxonómica. EPI2ME es necesario solo si tras la identificación de bases se necesitan análisis adicionales.
Para crear una cuenta en EPI2ME e instalar el agente de escritorio, consulte el protocolo de la plataforma.
Verificar la celda de flujo
Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.
Celda de flujo | Número mínimo de poros activos cubierto por la garantía |
---|---|
Flongle | 50 |
MinION/GridION | 800 |
PromethION | 5000 |
4. Reverse transcription and strand-switching
Material
- 100 ng Poly(A)+ RNA OR 1 µg of total RNA
Consumibles
- User-supplied VN Primer, 2 µM
- User-supplied Strand-Switching Primer, 10 µM
- 10 mM dNTP solution (e.g. NEB cat # N0447)
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- 0.2 ml thin-walled PCR tubes
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
Instrumental
- Pre-chilled freezer block at -20° C for 200 µl tubes (e.g. Eppendorf cat # 022510509)
- Microcentrífuga
- Termociclador
- Pipeta y puntas P1000
- Pipeta y puntas P200
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- Pipeta y puntas P2
IMPORTANTE
If you have already prepared your cDNA, use 70–200 fmol cDNA (~70–200 ng if your sample is 1.5 kb) and start from the cDNA repair and end-prep step.
Thaw the following reagents and spin down briefly using a microfuge, before mixing as indicated in the table below, and place on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
User-supplied VN Primer diluted to 2 µM | ✓ | ✓ | ✓ |
User-supplied Strand-Switching Primer diluted to 10 µM | ✓ | ✓ | ✓ |
10 mM dNTP solution | ✓ | ✓ | ✓ |
RNaseOUT | Not frozen | ✓ | ✓ |
Maxima H Minus Reverse Transcriptase | Not frozen | ✓ | ✓ |
Maxima H Minus 5x RT Buffer | ✓ | ✓ | Mix by vortexing |
Prepare the RNA in nuclease-free water
- Transfer 100 ng Poly(A)+ RNA or 1 μg of total RNA into a 0.2 ml PCR tube
- Adjust the volume to up to 7.5 μl with nuclease-free water
- Mix by flicking the tube to avoid unwanted shearing
- Spin down briefly in a microfuge
Prepare the following reaction in the 0.2 ml PCR tube containing the prepared RNA input:
Reagent | Volume |
---|---|
RNA input (100 ng Poly(A)+ RNA or 1 μg of total RNA) from step above | 7.5 μl |
VN Primer diluted to 2 μM | 2.5 μl |
10 mM dNTPs | 1 μl |
Total volume | 11 μl |
Mix gently by flicking the tube, and spin down.
Incubate at 65°C for 5 minutes and then snap cool on a pre-chilled freezer block for 1 minute.
In a separate tube, mix together the following:
Reagent | Volume |
---|---|
5x RT Buffer | 4 μl |
RNaseOUT | 1 μl |
Nuclease-free water | 1 μl |
Strand-Switching Primer diluted to 10 µM | 2 μl |
Total | 8 μl |
Mix gently by flicking the tube, and spin down.
Add the 8 μl of strand-switching reagents (prepared in steps 6-7) to the 11 μl of snap-cooled mRNA (from steps 2-5). Mix by flicking the tube and spin down.
Incubate at 42°C for 2 minutes in the thermal cycler.
Add 1 µl of Maxima H Minus Reverse Transcriptase. The total volume is now 20 µl.
Mix gently by flicking the tube, and spin down.
Incubate using the following protocol using a thermal cycler:
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Reverse transcription and strand-switching | 42°C | 90 mins | 1 |
Heat inactivation | 85°C | 5 mins | 1 |
Hold | 4°C | ∞ |
5. RNA degradation and second strand synthesis
Material
- AMPure XP Beads (AXP) (microesferas magnéticas)
Consumibles
- User-supplied PR2 Primer, 10 µM
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- LongAmp Taq 2X Master Mix (e.g. NEB cat # M0287)
- RNase Cocktail Enzyme Mix (ThermoFisher, cat # AM2286)
- Etanol al 80 % recién preparado con agua sin nucleasas
- Tubos de 1,5 ml Eppendorf DNA LoBind
Instrumental
- Termociclador
- Mezclador vórtex
- Mezclador Hula (mezclador giratorio suave)
- Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
- Cubeta con hielo
- Pipeta y puntas P1000
- Pipeta y puntas P200
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- Pipeta y puntas P2
Equipo opcional
- DNA QC equipment, e.g. Qubit fluorometer, NanoDrop spectrophotometer, Agilent Bioanalyzer or Tapestation, Agilent FEMTO Pulse
Thaw the following reagents and spin down briefly using a microfuge, before mixing as indicated in the table below, and place on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
User-supplied PR2 Primer diluted to 10 µM | ✓ | ✓ | ✓ |
RNase Cocktail Enzyme Mix | Not frozen | ✓ | ✓ |
LongAmp Taq 2X Master Mix | ✓ | ✓ | ✓ |
Thaw the AMPure XP Beads (AXP) at room temperature and mix by vortexing. Keep the beads at room temperature.
Add 1 µl RNase Cocktail Enzyme Mix (ThermoFisher, cat # AM2286) to the reverse transcription reaction.
Incubate the reaction for 10 minutes at 37° C in a thermal cycler.
Resuspend the AMPure XP beads (AXP) by vortexing.
Transferir la muestra a un tubo nuevo de 1,5 ml Eppendorf DNA Lobind.
Add 17 µl of resuspended AMPure XP beads (AXP) to the reaction and mix by flicking the tube.
Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
Preparar 500 µl de etanol al 80 %, con agua sin nucleasas.
Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
Repetir el paso anterior.
Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.
Remove the tube from the magnetic rack and resuspend pellet in 20 µl nuclease-free water.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Briefly spin down the tube and pellet the beads on the magnet until the eluate is clear and colourless, for at least 1 minute.
Remove and retain 20 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
Prepare the following reaction in a 0.2 ml thin-walled PCR tube:
Reagent | Volume |
---|---|
2x LongAmp Taq Master Mix | 25 μl |
PR2 Primer diluted to 10 μM | 2 μl |
Reverse-transcribed sample from above | 20 μl |
Nuclease-free water | 3 μl |
Total | 50 μl |
Incubate using the following protocol:
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Denaturation | 94 °C | 1 mins | 1 |
Annealing | 50 °C | 1 mins | 1 |
Extension | 65 °C | 15 mins | 1 |
Hold | 4 °C | ∞ |
Resuspend the AMPure XP beads (AXP) by vortexing.
Transferir la muestra a un tubo nuevo de 1,5 ml Eppendorf DNA Lobind.
Add 40 µl of resuspended AMPure XP beads (AXP) to the reaction and mix by flicking the tube.
Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
Prepare 500 μl of fresh 80% ethanol in nuclease-free water.
Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
Repetir el paso anterior.
Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.
Remove the tube from the magnetic rack and resuspend pellet in 21 µl nuclease-free water.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Briefly spin down the tube and pellet the beads on the magnet until the eluate is clear and colourless, for at least 1 minute.
Remove and retain 21 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Analyse 1 µl of the strand-switched DNA for size, quantity and quality using an Agilent Bioanalyzer and Qubit fluorometer (or equivalent).
FIN DEL PROCESO
Take forward the full volume of your sample into the cDNA repair and end-prep stage of the protocol.
Recovery aim for the samples after RNA degradation and second strand synthesis is 70–200 fmol (~70–200 ng if your sample is 1.5 kb).
6. cDNA repair and end-prep
Material
- Strand-switched cDNA in 20 µl
- AMPure XP Beads (AXP) (microesferas magnéticas)
Consumibles
- Tubos de PCR de pared fina (0,2 ml)
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Agua sin nucleasas (p. ej., ThermoFisher AM9937)
- NEBNext Ultra II End repair/dA-tailing Module (NEB E7546)
- Etanol al 80 % recién preparado con agua sin nucleasas
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)
Instrumental
- Pipeta y puntas P1000
- Pipeta y puntas P100
- Pipeta y puntas P10
- Thermal cycler
- Microcentrífuga
- Mezclador Hula (mezclador giratorio suave)
- Gradilla magnética
- Cubeta con hielo
Equipo opcional
- Fluorímetro Qubit (o equivalente para el control de calidad)
IMPORTANTE
If you have prepared your own cDNA instead of performing reverse transcription using the method outlined in this protocol, start this step with 70–200 fmol cDNA (~70–200 ng if your sample is 1.5 kb) in 20 µl nuclease-free water.
Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:
For optimal performance, NEB recommend the following:
Thaw all reagents on ice.
Ensure the reagents are well mixed.
Note: Do not vortex the Ultra II End Prep Enzyme Mix.Always spin down tubes before opening for the first time each day.
The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.
Combine the following reagents in a 0.2 ml PCR tube:
Reagent | Volume |
---|---|
cDNA sample | 20 µl |
Nuclease-free water | 30 µl |
Ultra II End-prep reaction buffer | 7 µl |
Ultra II End-prep enzyme mix | 3 µl |
Total | 60 µl |
Mezclar pipeteando con suavidad y centrifugar brevemente la reacción para asegurarse de que se mezcla completamente.
Incubar en el termociclador, primero a 20 ºC durante 5 minutos y después a 65 ºC durante 5 minutos más.
Resuspender las microesferas magnéticas AMPure XP Beads (AXP) agitándolas en vórtex.
Transferir la muestra de ADN a un tubo Eppendorf DNA Lobind de 1,5 ml.
Añadir 60 µl de microesferas magnéticas resuspendidas AMPure XP Beads (AXP) a la reacción de preparación de extremos y mezclar golpeando suavemente el tubo con el dedo.
Incubar en el mezclador Hula (o mezclador giratorio suave) durante 5 minutos a temperatura ambiente.
Preparar 500 µl de etanol al 80 %, con agua sin nucleasas.
Centrifugar la muestra y precipitar en un imán hasta que el sobrenadante se vuelva claro e incoloro. Dejar el tubo en el imán y retirar el sobrenadante con una pipeta.
Dejar el tubo en el imán y lavar el agregado de microesferas, con cuidado de no desplazarlo, con 200 µl de etanol al 80 %. Retirar el etanol con una pipeta y desechar.
Repetir el paso anterior.
Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.
Remove the tube from the magnetic rack and resuspend pellet in 61 µl nuclease-free water. Incubate for 2 minutes at room temperature.
Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.
Remove and retain 61 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.
FIN DEL PROCESO
Take forward the 60 µl of repaired and end-prepped cDNA into the adapter ligation step. However, at this point it is also possible to store the sample at 4°C overnight.
7. Adapter ligation and clean-up
Material
- Ligation Adapter (LA) (adaptador de ligación)
- Ligation Buffer (LNB)
- Short Fragment Buffer (SFB) (tampón para fragmentos cortos)
- AMPure XP Beads (AXP) (microesferas magnéticas)
- Elution Buffer (EB)
Consumibles
- NEBNext® Quick Ligation Module (NEB, E6056)
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)
Instrumental
- Gradilla magnética
- Microcentrífuga
- Mezclador vórtex
- Pipeta y puntas P1000
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- Fluorímetro Qubit (o equivalente para el control de calidad)
IMPORTANTE
Aunque la ligasa recomendada de otros fabricantes se suministra con su propio tampón, la eficiencia del adaptador, Ligation Adapter (LA), es mayor cuando se usa el tampón Ligation Buffer (LNB) suministrado en el kit Ligation Sequencing Kit.
IMPORTANTE
El adaptador incluido en este kit, Ligation Adapter (LA), no es intercambiable con otros adaptadores de secuenciación.
Centrifugar los viales Ligation Adapter (LA) y Quick T4 Ligase y poner en hielo.
Descongelar el vial Ligation Buffer (LNB) a temperatura ambiente, centrifugar y mezclar con la pipeta. Debido a su viscosidad, la agitación en vórtex de este tampón es ineficaz. Tras descongelar y mezclar, colocar en hielo inmediatamente.
Descongelar el vial Elution Buffer (EB) a temperatura ambiente, agitar en vórtex, centrifugar y colocar en hielo.
Thaw the Short Fragment Buffer (SFB) at room temperature and mix by vortexing. Then spin down and place on ice.
In a 1.5 ml Eppendorf DNA LoBind tube, mix in the following order:
Between each addition, pipette mix 10-20 times.
Reagent | Volume |
---|---|
cDNA sample from the previous step | 60 µl |
Ligation Adapter (LA) | 5 µl |
Ligation Buffer (LNB) | 25 µl |
NEBNext Quick T4 DNA Ligase | 10 µl |
Total | 100 µl |
Mezclar pipeteando con suavidad y centrifugar brevemente la reacción para asegurarse de que se mezcla completamente.
Incubar la reacción durante 10 minutos a temperatura ambiente.
Resuspender las microesferas magnéticas AMPure XP Beads (AXP) agitándolas en vórtex.
Añadir 40 μl de microesferas magnéticas resuspendidas AMPure XP Beads (AXP) a la reacción y mezclar dando suaves golpes al tubo con el dedo.
Incubar en el mezclador Hula (o mezclador giratorio suave) durante 5 minutos a temperatura ambiente.
Centrifugar la muestra y precipitar en un imán. Dejar el tubo en el imán y retirar el sobrenadante con una pipeta.
Wash the beads by adding 250 μl of Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
Note: Take care when removing the supernatant, the viscosity of the buffer can contribute to loss of beads from the pellet.
Repetir el paso anterior.
Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de sobrenadante. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.
Remove the tube from the magnetic rack and resuspend the pellet in 15 µl Elution Buffer (EB). Spin down and incubate for 10 minutes at room temperature.
Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.
Extraer 15 μl del eluido que contiene la biblioteca de ADN y conservar en un tubo de 1,5 ml Eppendorf DNA LoBind.
Deshechar las microesferas precipitadas.
CHECKPOINT
Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.
Depending on your DNA library fragment size, prepare your final library in 12 µl of Elution Buffer (EB).
Fragment library length | Flow cell loading amount |
---|---|
Very short (<1 kb) | 100 fmol |
Short (1-10 kb) | 35–50 fmol |
Long (>10 kb) | 300 ng |
Note: If the library yields are below the input recommendations, load the entire library.
If required, we recommend using a mass to mol calculator such as the NEB calculator.
IMPORTANTE
We recommend loading 35-50 fmol of this final prepared library onto the R10.4.1 flow cell.
This is to ensure high pore occupancy of >95% is reached. How to calculate pore occupancy can be found here.
FIN DEL PROCESO
La biblioteca preparada se usará para cargar la celda de flujo. Conservar la biblioteca en hielo o a 4 °C hasta el momento de cargar.
CONSEJO
Recomendaciones de guardado de la biblioteca
Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.
MEDIDA OPCIONAL
If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.
Depending on how many flow cells the library will be split across, more Elution Buffer (EB) than what is supplied in the kit will be required.
8. Cebado y carga de la celda de flujo MinION/GridION
Material
- Flow Cell Flush (FCF)
- Flow Cell Tether (FCT) (anclaje de celda de flujo)
- Library Solution (LIS)
- Library Beads (LIB) (microesferas de carga de la biblioteca)
- Sequencing Buffer (SB)
Consumibles
- Celda de flujo MinION/GridION
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Agua sin nucleasas (p. ej., ThermoFisher AM9937)
- (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
Instrumental
- Dispositivo MinION o GridION
- Pantalla protectora celdas de flujo MinION/GridION
- Pipeta y puntas P1000
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
IMPORTANTE
Nótese, este kit es compatible solo con las celdas de flujo R10.4.1 (FLO-MIN114).
CONSEJO
Cebado y carga de la celda de flujo
Se recomienda a los nuevos usuarios que miren el vídeo Priming and loading your flow cell antes de realizar su primer experimento.
Descongelar los viales Sequencing Buffer (SB), Library Beads (LIB) o Library Solution (LIS), -si se requiere-, y un tubo de Flow Cell Flush (FCF) a temperatura ambiente. Agitar en vórtex, centrifugar y colocar en hielo.
IMPORTANTE
Para obtener un rendimiento de secuenciación óptimo y mejorar el rendimiento de las celdas de flujo MinION R10.4.1 (FLO-MIN114), recomendamos añadir seroalbúmina bovina (BSA), en una concentración total de 0,2 mg/ml, a la mezcla de cebado de la celda de flujo.
Nota: No se aconseja utilizar ningún otro tipo de albúmina (p. ej., seroalbúmina humana recombinante).
Para preparar la mezcla de cebado con seroalbúmina bovina, mezclar Flow Cell Flush (FCF) y Flow Cell Tether (FCT) como se indica a continuación. Mezclar con la pipeta a temperatura ambiente.
Nota: Hemos cambiando el formato de algunos de los viales de nuestros kits, de tubos monouso a botellas de mayor cantidad.
Formato en tubos monouso En el tubo de Flow Cell Flush (FCF), añadir directamente 5 µl de seroalbúmina bovina (BSA), a una concentración de 50 mg/ml y 30 µl de Flow Cell Tether (FCT).
Formato en botella: En un tubo proporcionado a la cantidad de celdas de flujo que se vayan a utilizar, mezclar los siguientes reactivos:
Reactivo | Volumen por celda de flujo |
---|---|
Flow Cell Flush (FCF) | 1 170 µl |
Bovine Serum Albumin (BSA) a una concentración de 50 mg/ml | 5 µl |
Flow Cell Tether (FCT) | 30 µl |
Volumen total | 1 205 µl |
Abrir la tapa del dispositivo MinION o GridION y deslizar la celda de flujo debajo del clip. Presionar la celda de flujo con firmeza para asegurar un contacto eléctrico y térmico adecuados.
MEDIDA OPCIONAL
Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.
Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.
Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.
Abrir el puerto de cebado de la celda de flujo, deslizando la tapa en el sentido de las agujas del reloj.
IMPORTANTE
Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.
Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:
- Ajustar una pipeta P1000 a 200 μl.
- Introducir la punta de la pipeta en el puerto de cebado.
- Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.
Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.
Cargar 800 μl de solución en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.
Mezclar con la pipeta, minuciosamente, el contenido del vial Library Beads (LIB).
IMPORTANTE
Este vial contiene microesferas en suspensión. Las microesferas precipitan muy rápido; por eso, es fundamental mezclarlas justo antes de usar.
En la mayoría de experimentos de secuenciación, se recomienda usar Library Beads (LIB) . El reactivo Library Solution (LIS) está indicado para bibliotecas de ADN más viscosas.
En un tubo nuevo de 1,5 ml Eppendorf DNA LoBind, preparar la biblioteca de la siguiente manera:
Reactivo | Volumen por celda de flujo |
---|---|
Sequencing Buffer (SB) | 37,5 µl |
Library Beads (LIB) mezcladas justo antes de usar, o Library Solution (LIS), si se requiere | 25,5 µl |
Biblioteca de ADN | 12 µl |
Total | 75 µl |
Completar el cebado de la celda de flujo:
- Levantar suavemente la tapa del puerto de carga SpotON.
- Cargar 200 µl de solución en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.
Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.
Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.
Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.
IMPORTANTE
Para obtener resultados de secuenciación óptimos, coloque la pantalla protectora sobre la celda de flujo justo después de cargar la biblioteca.
Recomendamos colocar la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.
Colocar la pantalla protectora de la siguiente manera:
Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.
Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.
ATENCIÓN
La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.
FIN DEL PROCESO
Cerrar la tapa del dispositivo y configurar un experimento de secuenciación en MinKNOW.
9. Data acquisition and basecalling
Aspectos generales del análisis de datos de nanoporos
Para obtener una descripción completa del análisis de datos de nanoporos, que incluya distintas posibilidades para el análisis de identificación y postidentificicación de bases, consultar el documento Data Analysis.
Cómo empezar a secuenciar
El programa MinKNOW realiza el control del dispositivo de secuenciación, la adquisición de datos y la identificación de bases en tiempo real. Una vez que el usuario ha instalado MinKNOW en su ordenador, hay diferentes maneras de llevar a cabo la secuenciación:
1. Adquisición de datos e identificación de bases en tiempo real con el programa MinKNOW.
Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run".
2. Adquisición de datos e identificación de bases en tiempo real con el dispositivo GridION.
Seguir las instrucciones del manual de usuario de GridION.
3. Adquisición de datos e identificación de bases en tiempo real con el dispositivo MinION Mk1C.
Seguir las instrucciones del manual de usuario de MinION Mk1C.
4. Adquisición de datos e identificación de bases en tiempo real con el dispositivo PromethION.
Seguir las instrucciones de los manuales de usuario de PromethION o PromethION 2 Solo.
5. Adquisición de datos e identificación de bases posterior mediante MinKNOW.
Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run". Al configurar los parámetros del experimento, ajustar la pestaña Basecalling (Identificación de bases) en posición de APAGADO. Al terminar el experimento de secuenciación, seguir las instrucciones del apartado "Post-run analysis" del protocolo de MinKNOW.
10. Análisis posterior (1)
ATENCIÓN
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes.
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes. Pychopper currently miss-classsifies The reads generated with Direct cDNA Sequencing are not being classified correctly in the analysis workflow, leading to ≥80% data loss of full-read transcripts following analysis with wf-transcriptomes.
Note: Experienced users may be able to disable Pychopper during wf-transcriptomes analysis setup to circumvent this issue using the infomation available in the wf-transcriptomes GitHub page and the Pychopper GitHub page. Please note that deviating from the standard analysis settings can result in changes to the analysis output.
Análisis posterior a la identificación de bases
Existen varias opciones para completar el análisis de los datos de identificación de bases:
1. Procesos de trabajo en EPI2ME
Para realizar un análisis de datos exhaustivo, Oxford Nanopore Technologies ofrece una serie de tutoriales y procesos de trabajo de bioinformática, disponibles en EPI2ME Labs, situados en la sección EPI2ME de la comunidad Nanopore. La plataforma proporciona un espacio donde los procesos de trabajo que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.
2. Herramientas de análisis
El departamento de Investigación de Oxford Nanopore Technologies ha creado una serie de herramientas de análisis que están disponibles en el repositorio Oxford Nanopore de GitHub. Las herramientas están diseñadas para usuarios avanzados y contienen instrucciones sobre cómo instalar y ejecutar el programa. Estas herramientas están públicamente disponibles y cuentan con un mantenimiento mínimo.
3. Herramientas de análisis desarrolladas por la comunidad
Si en ninguno de los recursos anteriores se proporciona un método de análisis que responda a las necesidades de investigación requeridas, puede consultar la sección Bioinformatics del centro de recursos. Varios miembros de la comunidad Nanopore han desarrollado sus propias herramientas y cartera de productos en desarrollo para analizar los datos de la secuenciación por nanoporos. La mayoría de ellas está disponible en GitHub. Oxford Nanopore Technologies no desarrolla ni mantiene esas herramientas y no garantiza que sean compatibles con la última configuración de química/software.
11. Reutilización y devolución de celdas de flujo
Material
- Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)
Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a entre 2 °C y 8 ⁰C.
El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.
CONSEJO
Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.
Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.
Aquí puede encontrar las instrucciones para devolver celdas de flujo.
IMPORTANTE
Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.
12. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas
A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.
También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.
Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.
Baja calidad de la muestra
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) | El método de extracción de ADN no proporciona la pureza necesaria | Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes. Considere realizar un paso adicional de limpieza SPRI. |
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). | El ARN se degradó durante la extracción | Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling. |
El ARN tiene una longitud de fragmento más corta de lo esperado | El ARN se degradó durante la extracción | Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling. Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas. |
Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Escasa recuperación | Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. | 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas. 2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza. |
Escasa recuperación | Los fragmentos de ADN son más cortos de lo esperado | Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. |
Escasa recuperación tras la preparación de extremos | El paso de lavado utilizó etanol a <70 % | Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto. |
13. Issues during the sequencing run
A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.
También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.
Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.
Menos poros al inicio de la secuenciación que después de verificar la celda de flujo
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | Se introdujo una burbuja de aire en la matriz de nanoporos | Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra. |
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | La celda de flujo no está colocada correctamente | Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION). |
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros | El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes. |
Error en el script de MinKNOW
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW muestra el mensaje "Error en el script" | Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales. |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
Longitud de lectura más corta de lo esperado
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Longitud de lectura más corta de lo esperado | Fragmentación no deseada de la muestra de ADN | La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca. 1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore. 2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado. 3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente. |
Gran proporción de poros no disponibles
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros) Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles. | Hay contaminantes presentes en la muestra | Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones: 1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004) 2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas. |
Gran proporción de poros inactivos
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) | Se han introducido burbujas de aire en la celda de flujo | Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell |
Gran proporción de poros inactivos/no disponibles | Ciertos compuestos copurificados con ADN | Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas. 1. Consulte la página Plant leaf DNA extraction method. 2. Limpiar usando el kit QIAGEN PowerClean Pro. 3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g. |
Gran proporción de poros inactivos/no disponibles | Hay contaminantes presentes en la muestra | Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes. |
Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación | En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) | Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo. |
Fluctuación de la temperatura
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Fluctuación de la temperatura | La celda de flujo ha perdido contacto con el dispositivo | Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica. |
Error al intentar alcanzar la temperatura deseada
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" | El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). | MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez transcurrido ese tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo, procure que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Encontrará más información sobre el control de temperatura del MinION en este enlace. |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |