Ligation sequencing gDNA V14 — reduced representation methylation sequencing (RRMS) (SQK-LSK114)


Descripción general

For Research Use Only.

Document version: RRMS_9180_v114_revK_13Dec2024

1. Overview of the protocol

IMPORTANTE

Adaptive sampling in Kit 14 chemistry

While using Kit 14 chemistry, this workflow has been optimised to enrich specific regions of interest (ROIs) with Adaptive sampling rather than duplex basecalling, ensuring highest output and the best sequencing results.

For more background information about designing an adaptive sampling experiment, please refer to the Adaptive sampling best practice document: Adaptive sampling best practice

Reduced representation methylation sequencing (RRMS)

Nanopore sequencing enables direct detection of methylated cytosines (e.g., at CpG sites), without the need for bisulphite conversion. CpG sites frequently occur in high density clusters called CpG islands (CGI) and most of vertebrate genes have their promoters embedded within CGIs.

Changes in methylation patterns within promoters is associated with changes in gene expression and disease states such as cancer: exploring methylation differences between tumour samples and normal samples can help to uncover mechanisms associated with tumour formation and development.

Adaptive sampling (AS) offers a fast, flexible and precise method to enrich for regions of interest (e.g. CGIs) by depleting off-target regions during sequencing itself with no requirement for upfront sample manipulation.

To read more about how the method works, and how it compares to other techniques for analysing methylation (e.g. EPIC arrays, bisulfite), please see our Introduction to Reduced-Representation Methylation Sequencing.

RRMS can be deployed on MinION Mk1B/Mk1D, GridION and PromethION P2S, P24 and P48 platforms.

When running on MinION/GridION, we recommend running a single sample per flow cell using our this protocol.

Alternatively, it is possible to multiplex up to 4 samples on a single PromethION flow cell, using our Ligation sequencing gDNA V14 - reduced representation methylation multiplex sequencing (RRMS) (SQK-NBD114.24) protocol.

Human sample sequencing

The RRMS protocol enables users to target 310 Mb of the human genome which are highly enriched for CpGs including all annotated CpG islands, shores, shelves and >90% of promoter regions (100% of promoter with more than 4 CpGs). As well as other rich CpG regions in the genome. The total number of CpG sites in the .bed file is 7.18 million.

For benchmarking purposes, we performed RRMS on five replicates of a metastatic melanoma cell line and its normal pair for a male individual (COLO829/COLO829_BL) and a triple negative breast cancer cell-line pair (HCC1395/HCC1935_BL). Each sample was run on a single MinION flow cell. RRMS resulted in high-confidence methylation calls (>10 overlapping reads) for 7.3-8.5 million CpGs per sample.

For comparison, we also performed Reduced Representation Bisulphite Sequencing (RRBS), which typically yields 1.7–2.5 high confidence calls per sample. More information on this comparison can be accessed in our RRMS performance document and poster.

Mouse sample sequencing

The RRMS protocol and a new .bed file have also been developed to target 308 Mb of the mouse genome, covering 100% of CpG island and promoter regions; as well as other rich CpG regions in the genome.

The performance of RRMS for mouse samples was characterised on replicates of a blastocyst-derived, embryonic stem cell line (ES-E14TG2a) and a leukemia cell-line (BALB/c AMuLV A.3R.1). A non-RRMS library was also run as a control. Each sample was run on a single MinION flow cell: RRMS resulted in high-confidence methylation calls (>10X reads per site) for 5.0–5.8 million CpGs per sample in the mouse genome, compared to ~400,000 CpGs in the control library.

Alternative vertebrate genomes could be sequenced using the RRMS protocol and a bespoke .bed file.
However, please note Oxford Nanopore Technologies has only validated this method using human and mouse samples.

Introduction to the DNA extraction and ligation sequencing protocol for RRMS

This protocol describes how to carry out DNA extraction and reduced representation methylation sequencing (RRMS) using the Ligation Sequencing Kit V14 (SQK-LSK114) and the Adaptive Sampling feature in MinKNOW.

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

  • Extract your DNA, fragment it using the Covaris g-TUBE, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Ensure that you have the correct .bed file for Adaptive Sampling
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Library preparation

The table below is an overview of the steps required in the library preparation, including timings and optional stopping points.

Library preparation Process Time Stop option
DNA repair and end-prep Repair the fragmented DNA and prepare the DNA ends for adapter attachment 35 minutes 4°C overnight
Adapter ligation and clean-up Attach the sequencing adapters to the DNA ends 30 minutes 4°C short-term storage or for repeated use, such as re-loading your flow cell
-80°C for single-use, long-term storage.
We strongly recommend sequencing your library as soon as it is adapted.
Priming and loading the flow cell Prime the flow cell and load the prepared library for sequencing 5 minutes

2022-06-16 RRMS workflow v1

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads. While configuring the run, turn on the Adaptive Sampling setting and import a pre-prepared .bed file with your regions of interest, along with a FASTA reference file.
  • Sequence the sample for a total of 96 hours, with two flow cell washes when the available pore count drops to around 40% of the starting pore count (typically after ~24 hours and the second time after ~48 hours).
  • Use Dorado to call modified bases, for more information please refer to the Dorado github page.
  • Use the commands recommended at the end of this protocol to aggregate the modified bases and perform CpG island annotation.
IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

  • Ligation Sequencing Kit V14 (SQK-LSK114)
  • R10.4.1 flow cells (FLO-MIN114)
  • Flow Cell Wash Kit (EXP-WSH004)

2. Equipment and consumables

Material
  • 2 μg extracted genomic DNA (e.g. from cell culture or tissue sample)
  • Ligation Sequencing Kit V14 (SQK-LSK114)
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Consumibles
  • NEBNext® Companion Module v2 para Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7672S o E7672L)
  • Etanol al 80 % recién preparado con agua sin nucleasas
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Tubos de PCR de pared fina (0,2 ml)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)
  • (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

Instrumental
  • Mezclador Hula (mezclador giratorio suave)
  • Separador magnético, adecuado para tubos Eppendorf de 1,5 ml
  • Microcentrífuga
  • Mezclador vórtex
  • Termociclador
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Cubeta con hielo
  • Temporizador
Equipo opcional
  • Bioanalizador Agilent (o equivalente)
  • Fluorímetro Qubit (o equivalente para el control de calidad)
  • Centrifuga Eppendorf 5424 (o equivalente)

After performing DNA extraction and DNA fragmentation, you will need 2 µg genomic DNA to take forward into the library preparation.

Cantidad de muestra inicial de ADN

Cómo realizar un control de calidad del ADN de la muestra inicial

Es importante que la muestra de ADN cumpla con los requisitos de cantidad y calidad. Usar demasiado ADN, poco o de mala calidad (p. ej., que esté muy fragmentado, que contenga ARN o contaminantes químicos), puede afectar a la preparación de la biblioteca.

Para realizar un control de calidad en la muestra de ADN, consulte el protocolo Input DNA/ RNA QC

Contaminantes químicos

Dependiendo de cómo se extraiga el ADN de la muestra cruda, ciertos contaminantes químicos pueden permanecer en el ADN purificado, lo cual afecta la eficacia de la preparación de la biblioteca y la calidad de la secuenciación. Encontrará más información sobre contaminantes en la página Contaminants de la comunidad Nanopore.

NEBNext® Companion Module v2 para secuenciación por ligación, de Oxford Nanopore Technologies®

Recomendamos el módulo de acompañamiento NEBNext® Companion Module v2 for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7672S or E7672L), que contiene todos los reactivos NEB necesarios para usar con el kit Ligation Sequencing Kit.

La versión previa, NEBNext® Companion Module de Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L) es compatible, pero el módulo recomendado v2 ofrece una ligación y adición de dA más efectiva, resultado del reactivo FFPEv2 DNA Repair Buffer y la ligasa Salt-T4 DNA Ligase, recpectivamente.
Con el módulo v2 también se consigue un notable ahorro de costes por preparación de muestra.

Nótese que, en los protocolos con amplicones no es necesario utilizar la mezcla de reparación de ADN, NEBNext FFPE DNA Repair Mix y es más rentable comprar los reactivos necesarios por separado.

Reactivos de otros fabricantes

Oxford Nanopore Technologies ha probado y recomienda el uso de todos los reactivos de otros fabricantes citados en este protocolo. No se han evaluado otras alternativas.

Recomendamos preparar estos reactivos siguiendo las instrucciones del fabricante.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000
IMPORTANTE

A fin de garantizar un elevado rendimiento de ligación del adaptador Ligation Adapter (LA), recomendamos el uso del tampón Ligation Buffer (LNB) incluido en el kit Ligation Sequencing Kit V14, en lugar del tampón de ligasa de otros fabricantes.

IMPORTANTE

El adaptador incluido en este kit, Ligation Adapter (LA), no es intercambiable con otros adaptadores de secuenciación.

Contenido del kit Ligation Sequencing Kit V14 (SQK-LSK114)

Nota: Hemos cambiando el formato de nuestros kits; hemos sustituido algunos de los viales de un solo uso por botellas de mayor contenido.

Formato de tubos monouso SQK-LSK114 v2 ES

Formato en botella SQK-LSK114 v3 ES

Nota: este producto contiene un reactivo, AMPure XP, fabricado por Beckman Coulter Inc., que puede conservarse con el kit a -20 °C sin perjudicar su estabilidad.

Nota: la muestra de control de ADN (DCS) es un amplicón estándar de 3,6 kb, que mapea el extremo 3' del genoma Lambda.

3. .bed file

Download the .bed file from the Adaptive Sampling catalogue.

The Adaptive Sampling catalogue provides a way for both the Oxford Nanopore team and Community members to share .bed files with genomic target regions used for Adaptive Sampling experiments. The .bed files along with a reference genome can be uploaded into MinKNOW.

For human genome RRMS experiments, download the Human reduced representation methylation sequencing (RRMS) file.

For mouse genome RRMS experiments, download the Mouse reduced representation methylation sequencing (RRMS) file.

(Optional): For alternative vertebrate genomes, please use a bespoke .bed file for the desired organism.

4. DNA extraction

Material
  • 5 x 10^6 cells

Consumibles
  • Puregene Cell Kit (QIAGEN, 158043)
  • Etanol al 70 % recién preparado en agua sin nucleasas
  • TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) (Fisher scientific, 10224683)
  • 1 x Phosphate-buffered saline (PBS)
  • Isopropanol
  • Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • 15 ml Falcon tubes
  • 1.5 ml Eppendorf DNA LoBind tubes

Instrumental
  • Centrifuge and rotor suitable for 15 ml Falcon tubes
  • Incubator or water bath set at 37°C and 50°C
  • Mezclador vórtex
  • Inoculation loop or disposable tweezers for spooling DNA
  • Wide-bore pipette tips
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Fluorímetro Qubit (o equivalente para el control de calidad)

Extraction from cultured cell lines:

Extract DNA from your sample(s) using one of our recommended extraction protocols.

For the benchmarking of this method, the Oxford Nanopore team extracted DNA from ~5 million cells using the protocol: Human cell line DNA – QIAGEN Puregene Cell Kit. The steps for this method are outlined below.
Note: this method is also suitable for mouse cell line DNA.

We also offer multiple mammalian sample extraction protocols, which you can use for other sample types.

Harvest and pellet 5 x 10^6 cells by centrifugation at 300 x g for 3 minutes. If any liquid remains associated with the pellet, spin down the cells again and aspirate the remaining supernatant.

Add 200 µl of 1x PBS to the pelleted cells and centrifuge at 300 x g for 3 minutes. Aspirate and discard the supernatant.

Add 2 ml of Cell Lysis Solution to the washed cell pellet. Using a wide-bore pipette tip, resuspend the cells and transfer them to a 15 ml Falcon tube. If clumps of cells remain, gently invert the tube.

Incubate the sample at 37°C for 30 minutes.

Add 700 µl of the Protein Precipitation Solution to the lysed cells and mix by vortexing for three pulses of 5 seconds.

Centrifuge the sample at 2000 x g for 5 minutes.

Transfer the supernatant to a new tube and add 2.5 ml of room temperature isopropanol. Discard the pellet.

Mix by gently inverting the tube 50 times.

Spool the DNA using an inoculation loop or disposable tweezers.

Dip the spooled DNA in an Eppendorf tube containing 70% cold ethanol.

Remove the inoculation loop or tweezers with the spooled DNA from the ethanol tube, and allow it to air-dry for a few seconds.

Dip the DNA in a 1.5 ml Eppendorf DNA LoBind tube containing 250 µl TE (1 mM EDTA, pH 8.0) and allow the DNA to gently dislodge from the loop/tweezers.

Incubate the DNA pellet for 2 hours at 50°C, occasionally mixing the tube contents by gentle inversion.

Note: The pellet may take some time to dissolve, so ensure the solution is homogenous before quantifying.

Quantify 1 µl of each eluted sample using a Qubit fluorometer.

FIN DEL PROCESO

Take forward 2 µg of extracted gDNA, for each sample, into the fragmentation of extracted DNA stage of the protcol.

5. DNA fragmentation

Material
  • 2 µg of extracted gDNA (from previous step)

Consumibles
  • g-TUBE™ (Covaris, 520079)
  • TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) (Fisher scientific, 10224683)
  • Qubit dsDNA BR Assay Kit (Invitrogen, Q32850)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • 1.5 ml Eppendorf DNA LoBind tubes

Instrumental
  • Eppendorf 5424 centrifuge (or equivalent)
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P2
  • Fluorímetro Qubit (o equivalente para el control de calidad)
Equipo opcional
  • Agilent Femto Pulse System (or equivalent for read length QC)

Fragmentation of extracted DNA using Covaris g-Tube:

To prepare fragmented gDNA for the library prep protocol, mechanical fragmentation is performed using a g-TUBE (Covaris) to shear DNA to a fragment length of approximately 6kb.

Prepare the DNA in TE buffer:

  1. Ensure you have 2 µg of extracted gDNA from the sample extraction, and transfer this into a 1.5 ml Eppendorf tube.
  2. Adjust the volume to 50 μl with TE buffer.
  3. Mix thoroughly by pipetting up and down.
  4. Spin down briefly in a microfuge.

Load the 50 µl of the sample into the top of the g-TUBE. Screw the cap firmly and centrifuge at 11,000 rpm (~11,300 RCF) for 30 seconds.

After centrifugation, spin the tube again at 11,000 rpm (~11,300 RCF) for 10 seconds to ensure complete passage of all gDNA through the constriction.

Visually inspect to confirm the entire sample has passed through the upper chamber to the lower chamber of the g-TUBE.

Invert the g-TUBE and spin it again at the same speed and duration as above: 11,000rpm (~11,300 RCF) for 30 seconds.

Repeat the centrifugation at 11,000 rpm (~11,300 RCF) for 10 seconds to ensure thorough passage of all gDNA through the constriction.

Unscrew the tube body, leaving the screw-cap containing the sample. Retrieve the sample from the g-TUBE screw-cap and transfer it into a clean 1.5 ml Eppendof tube.

Quantify 1 µl of the fragmented gDNA using the Qubit dsDNA Broad Range Assay Kit.

Sample concentration after g-TUBE shearing, is expected to be within the range of 25–35 ng/µl.

MEDIDA OPCIONAL

The fragmented gDNA should also be assessed using Femto-Pulse (Agilent) to evaluate the size and quality of the DNA.

gDNA fragmentation femtopulse graph RRMS SVG

Example DNA fragment distribution after g-tube fragmentation, analysed using an Agilent 165 kb Femto-Pulse Assay. Note the single prominent peak ~6 kb.

FIN DEL PROCESO

Take forward 2 µg of fragmented gDNA in 48 µl, for each sample, into the library preparation section of the protcol.

6. DNA repair and end-prep

Material
  • gDNA in 48 μl nuclease-free water
  • AMPure XP Beads (AXP) (microesferas magnéticas)

Consumibles
  • NEBNext® FFPE DNA Repair Mix (M6630), del Companion Module v2 (NEB, E7672S o E7672L) de NEBNext®
  • NEBNext® Ultra II End Prep Enzyme Mix (E7646), del Companion Module v2 (NEB, E7672S o E7672L) de NEBNext®
  • NEBNext® FFPE DNA Repair Buffer v2 (E7363), del Companion Module v2 (NEB, E7672S o E7672L) de NEBNext®
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • Etanol al 80 % recién preparado con agua sin nucleasas
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Tubos de PCR de pared fina (0,2 ml)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)

Instrumental
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P10
  • Thermal cycler
  • Microcentrífuga
  • Mezclador Hula (mezclador giratorio suave)
  • Gradilla magnética
  • Cubeta con hielo
Equipo opcional
  • Fluorímetro Qubit (o equivalente para el control de calidad)
CONSEJO

Recomendamos utilizar el módulo de acompañamiento Companion Module v2 para Oxford Nanopore Technologies® Ligation Sequencing (ref. E7672S or E7672L) de NEBNext®, que contiene los reactivos necesarios para utilizar junto al Ligation Sequencing Kit.

La versión anterior, NEBNext® Companion Module para Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S o E7180L) también es compatible, pero el modelo recomendado v2, ofrece una ligadura y adición de dA más eficaces.

Preparar los reactivos NEB siguiendo las instrucciones del fabricante y poner en hielo.

Para obtener un rendimiento óptimo, NEB recomienda lo siguiente:

  1. Descongelar todos los reactivos en hielo.

  2. Golpear suavemente los tubos de los reactivos con el índice o invertirlos, a fin de mezclarlos bien.
    Nota: No mezclar en vórtex las mezclas FFPE DNA Repair Mix, ni Ultra II End Prep Enzyme Mix.

  3. Centrifugar los tubos antes de abrirlos.

  4. Mezclar en vórtex los tampones FFPE DNA Repair Buffer v2 o FFPE DNA Repair Buffer y Ultra II End Prep Reaction Buffer, a fin de mezclarlos bien.

    Nota: Es posible que los tampones tengan un precipitado blanco. Si ello ocurre, dejar que la mezcla se ponga a temperatura ambiente y mezclar el tampón con la pipeta varias veces para romper el precipitado; a continuación, mezclar rápido en vórtex.

  5. El tampón FFPE DNA Repair Buffer puede tener un matiz amarillo; no importa si está así; se puede utilizar.

Prepare the DNA in nuclease-free water.

  • Transfer 2 μg of the fragmented DNA into a 1.5 ml Eppendorf DNA LoBind tube
  • Adjust the volume to 48 μl with nuclease-free water
  • Mix thoroughly by flicking the tube
  • Spin down briefly in a microfuge

In a 0.2 ml thin-walled PCR tube, mix the following:

Between each addition, pipette mix 10-20 times.

Reagent Volume
DNA from the previous step 48 µl
NEBNext FFPE DNA Repair Buffer v2 7 µl
NEBNext FFPE DNA Repair Mix 2 µl
Ultra II End-prep Enzyme Mix 3 µl
Total 60 µl

If using the previous version of the NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L):

Between each addition, pipette mix 10-20 times.

Reagent Volume
DNA from the previous step 48 µl
NEBNext FFPE DNA Repair Buffer 3.5 µl
NEBNext FFPE DNA Repair Mix 2 µl
Ultra II End-prep Reaction Buffer 3.5 µl
Ultra II End-prep Enzyme Mix 3 µl
Total 60 µl

Ensure the components are thoroughly mixed by pipetting, and spin down.

Incubar en el termociclador, primero a 20 ºC durante 5 minutos y después a 65 ºC durante 5 minutos más.

IMPORTANTE

AMPure XP bead clean-up

It is recommended that the repaired/end-prepped DNA sample is subjected to the following clean-up with AMPure XP beads. This clean-up can be omitted for simplicity and to reduce library preparation time. However, it has been observed that omission of this clean-up can: reduce subsequent adapter ligation efficiency, increase the prevalence of chimeric reads, and lead to an increase in pores being unavailable for sequencing. If omitting the clean-up step, proceed to the next section.

Resuspend the AMPure XP Beads (AXP) by vortexing.

Transferir la muestra de ADN a un tubo Eppendorf DNA Lobind de 1,5 ml.

Añadir 60 µl de microesferas magnéticas resuspendidas AMPure XP Beads (AXP) a la reacción de preparación de extremos y mezclar golpeando suavemente el tubo con el dedo.

Incubar en el mezclador Hula (o mezclador giratorio suave) durante 5 minutos a temperatura ambiente.

Preparar 500 µl de etanol al 80 %, con agua sin nucleasas.

Centrifugar la muestra y precipitar en un imán hasta que el sobrenadante se vuelva claro e incoloro. Dejar el tubo en el imán y retirar el sobrenadante con una pipeta.

Keep the tube on the magnet and wash the beads with 200 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.

Repetir el paso anterior.

Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de etanol. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.

Quitar el tubo de la gradilla magnética y resuspender el agregado en 61 µl de agua sin nucleasas. Incubar durante 2 minutos a temperatura ambiente.

Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.

Extraer 61 µl de eluido y guardar en un tubo Eppendorf DNA Lobind de 1,5 ml.

CHECKPOINT

Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.

FIN DEL PROCESO

Una vez el ADN está reparado y con los extremos preparados, se puede proceder a la ligación del adaptador. En este punto, también se puede guardar la muestra a 4 ⁰C hasta el día siguiente.

7. Adapter ligation and clean-up

Material
  • Ligation Adapter (LA) (adaptador de ligación)
  • Ligation Buffer (LNB) (tampón de ligación) del kit Ligation Sequencing Kit
  • Long Fragment Buffer (LFB) (tampón para fragmentos largos)
  • AMPure XP Beads (AXP) (microesferas magnéticas)
  • Elution Buffer (EB) (tampón de elución) del kit de Oxford Nanopore

Consumibles
  • Salt-T4® DNA Ligase (NEB, M0467)
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)

Instrumental
  • Gradilla magnética
  • Microcentrífuga
  • Mezclador vórtex
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Fluorímetro Qubit (o equivalente para el control de calidad)
CONSEJO

Recomendamos utilizar Salt-T4® DNA Ligase (NEB, M0467).

La ligasa Salt-T4® DNA Ligase (NEB, M0467) puede adquirirse por separado o como parte del NEBNext® Companion Module v2 para Oxford Nanopore Technologies® Ligation Sequencing (ref. E7672S or E7672L).

La ligasa Quick T4 DNA Ligase (NEB, E6057), disponible en la versión anterior —NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L)— también es compatible, pero los nuevos reactivos recomendados ofrecen mayor eficacia y ligación.

IMPORTANTE

Aunque la ligasa recomendada de otros fabricantes se suministra con su propio tampón, la eficiencia del adaptador, Ligation Adapter (LA), es mayor cuando se usa el tampón Ligation Buffer (LNB) suministrado en el kit Ligation Sequencing Kit.

Centrifugar los viales Ligation Adapter (LA) y Salt-T4® DNA Ligase y poner en hielo.

Descongelar el vial Ligation Buffer (LNB) a temperatura ambiente, centrifugar y mezclar con la pipeta. Debido a su viscosidad, la agitación en vórtex de este tampón es ineficaz. Tras descongelar y mezclar, colocar en hielo inmediatamente.

Descongelar el vial Elution Buffer (EB) a temperatura ambiente, agitar en vórtex, centrifugar y colocar en hielo.

Thaw the Long Fragment Buffer (LFB) at room temperature and mix by vortexing. Then spin down and place on ice.

En un tubo Eppendorf DNA LoBind de 1,5 ml mezclar en el siguiente orden:

Entre cada adición, mezclar con la pipeta de 10 a 20 veces.

Reactivo Volumen
Muestra de ADN del paso anterior 60 µl
Ligation Buffer (LNB) 25 µl
NEBNext Quick T4 DNA Ligase 10 µl
Ligation Adapter (LA) 5 µl
Total 100 µl

Ensure the components are thoroughly mixed by pipetting, and spin down.

Incubar la reacción durante 10 minutos a temperatura ambiente.

IMPORTANTE

If you have omitted the AMPure purification step after DNA repair and end-prep, do not incubate the reaction for longer than 10 minutes.

Resuspend the AMPure XP Beads (AXP) by vortexing.

Añadir 40 μl de microesferas magnéticas resuspendidas AMPure XP Beads (AXP) a la reacción y mezclar dando suaves golpes al tubo con el dedo.

Incubar en el mezclador Hula (o mezclador giratorio suave) durante 5 minutos a temperatura ambiente.

Centrifugar la muestra y precipitar en un imán. Dejar el tubo en el imán y retirar el sobrenadante con una pipeta.

Wash the beads by adding 250 μl Long Fragment Buffer (LFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.

Repetir el paso anterior.

Centrifugar y colocar el tubo de nuevo en el imán. Retirar con una pipeta cualquier residuo de sobrenadante. Dejar secar el agregado durante 30 s aproximadamente, sin dejar que se agriete.

Quitar el tubo de la gradilla magnética y resuspender el agregado en 15 µl de Elution Buffer (EB). Centrifugar e incubar durante 10 minutos a temperatura ambiente. Tratándose de ADN de alto peso molecular, incubar a 37 ⁰C puede mejorar la recuperación de fragmentos largos. (1)

Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.

Extraer 15 μl del eluido que contiene la biblioteca de ADN y conservar en un tubo de 1,5 ml Eppendorf DNA LoBind. (1)

Deshechar las microesferas precipitadas.

CHECKPOINT

Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.

IMPORTANTE

We recommend loading 150 ng of the final prepared library onto the flow cell.

The loading recommendation has been optimised for the sample preparation and sequencing output of this protocol. The loading quantity differs from the standard Kit 14 ligation protocols due to a higher input requirement in the adaptive sampling.

Take forward 12 µl of the final prepared library.

Store the remaining prepared library for flow cell washing and reloading.

FIN DEL PROCESO

La biblioteca preparada se usará para cargar la celda de flujo. Conservar la biblioteca en hielo o a 4 °C hasta el momento de cargar.

CONSEJO

Library storage recommendations

We recommend storing libraries in Eppendorf DNA LoBind tubes at 4°C for short term storage or repeated use, for example, reloading flow cells between washes. For single use and long-term storage of more than 3 months, we recommend storing libraries at -80°C in Eppendorf DNA LoBind tubes.

IMPORTANTE

Sequencing and flow cell washes

Sequence the sample for a total of 96 hours, with two flow cell washes. After ~24 hours, or when the pore count drops to 40-50% of the initial number at the start of the experiment, pause the run and wash the flow cell using the Flow Cell Wash Kit. Load another 12 µl of eluted DNA library and sequence for another ~24 hours. After this, repeat the flow cell wash for the second time, load another 12 µl of eluted DNA library and sequence for the remaining ~48 hours.

Note: To avoid pore numbers falling too low before performing the flow cell wash, it may be necessary to pause the experiment overnight.

8. Cebado y carga de la celda de flujo MinION/GridION (1)

Material
  • 12 µl of adapted DNA library (from previous step)
  • Flow Cell Flush (FCF)
  • Flow Cell Tether (FCT) (anclaje de celda de flujo)
  • Library Solution (LIS)
  • Library Beads (LIB) (microesferas de carga de la biblioteca)
  • Sequencing Buffer (SB)

Consumibles
  • Celda de flujo MinION/GridION
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

Instrumental
  • Dispositivo MinION o GridION
  • Pantalla protectora celdas de flujo MinION/GridION
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
IMPORTANTE

Nótese, este kit es compatible solo con las celdas de flujo R10.4.1 (FLO-MIN114).

CONSEJO

Cebado y carga de la celda de flujo

Se recomienda a los nuevos usuarios que miren el vídeo Priming and loading your flow cell antes de realizar su primer experimento.

Descongelar los viales Sequencing Buffer (SB), Library Beads (LIB) o Library Solution (LIS), -si se requiere-, y un tubo de Flow Cell Flush (FCF) a temperatura ambiente. Agitar en vórtex, centrifugar y colocar en hielo.

IMPORTANTE

Para obtener un rendimiento de secuenciación óptimo y mejorar el rendimiento de las celdas de flujo MinION R10.4.1 (FLO-MIN114), recomendamos añadir seroalbúmina bovina (BSA), en una concentración total de 0,2 mg/ml, a la mezcla de cebado de la celda de flujo.

Nota: No se aconseja utilizar ningún otro tipo de albúmina (p. ej., seroalbúmina humana recombinante).

Para preparar la mezcla de cebado con seroalbúmina bovina, mezclar Flow Cell Flush (FCF) y Flow Cell Tether (FCT) como se indica a continuación. Mezclar con la pipeta a temperatura ambiente.

Nota: Hemos cambiando el formato de algunos de los viales de nuestros kits, de tubos monouso a botellas de mayor cantidad.

Formato en tubos monouso En el tubo de Flow Cell Flush (FCF), añadir directamente 5 µl de seroalbúmina bovina (BSA), a una concentración de 50 mg/ml y 30 µl de Flow Cell Tether (FCT).

Formato en botella: En un tubo proporcionado a la cantidad de celdas de flujo que se vayan a utilizar, mezclar los siguientes reactivos:

Reactivo Volumen por celda de flujo
Flow Cell Flush (FCF) 1 170 µl
Bovine Serum Albumin (BSA) a una concentración de 50 mg/ml 5 µl
Flow Cell Tether (FCT) 30 µl
Volumen total 1 205 µl

Abrir la tapa del dispositivo MinION o GridION y deslizar la celda de flujo debajo del clip. Presionar la celda de flujo con firmeza para asegurar un contacto eléctrico y térmico adecuados.

Flow Cell Loading Diagrams Step 1a

Paso 1b- Diagramas carga de la celda de flujo ES

MEDIDA OPCIONAL

Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.

Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.

Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.

Abrir el puerto de cebado de la celda de flujo, deslizando la tapa en el sentido de las agujas del reloj.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de cebado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

Cargar 800 μl de solución en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.

Flow Cell Loading Diagrams Step 04 V5 SPANISH

Mezclar con la pipeta, minuciosamente, el contenido del vial Library Beads (LIB).

IMPORTANTE

Este vial contiene microesferas en suspensión. Las microesferas precipitan muy rápido; por eso, es fundamental mezclarlas justo antes de usar.

En la mayoría de experimentos de secuenciación, se recomienda usar Library Beads (LIB) . El reactivo Library Solution (LIS) está indicado para bibliotecas de ADN más viscosas.

En un tubo nuevo de 1,5 ml Eppendorf DNA LoBind, preparar la biblioteca de la siguiente manera:

Reactivo Volumen por celda de flujo
Sequencing Buffer (SB) 37,5 µl
Library Beads (LIB) mezcladas justo antes de usar, o Library Solution (LIS), si se requiere 25,5 µl
Biblioteca de ADN 12 µl
Total 75 µl

Completar el cebado de la celda de flujo:

  1. Levantar suavemente la tapa del puerto de carga SpotON.
  2. Cargar 200 µl de solución en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5 SPANISH 2

Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.

Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.

Flow Cell Loading Diagram Step 07 V5 SPANISH

Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.

Step 8 update - SPANISH

Flow Cell Loading Diagrams Step 9 SPANISH

IMPORTANTE

Para obtener resultados de secuenciación óptimos, coloque la pantalla protectora sobre la celda de flujo justo después de cargar la biblioteca.

Recomendamos colocar la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.

Colocar la pantalla protectora de la siguiente manera:

  1. Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.

  2. Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.

J2264 - Light shield animation Flow Cell FAW optimised. SPANISH

ATENCIÓN

La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.

FIN DEL PROCESO

Cerrar la tapa del dispositivo y configurar un experimento de secuenciación en MinKNOW. (1)

For instructions on setting up your sequencing run please visit the Data acquisition and basecalling section of this protocol.

Reminder: For this protocol, we recommend washing and reloading your flow cell with fresh library to maintain high data acquisition after ~24 hours of sequencing.

Follow the instructions in the Washing and reloading a MinION and GridION Flow Cell section of this protocol.

9. Washing and reloading a MinION and GridION Flow Cell

Material
  • 12 µl of adapted DNA library (from previous step)
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)
  • Flow cell priming reagents available in your sequencing kit or in the following kits:
  • Sequencing Auxiliary Vials V14 (EXP-AUX003)
  • Flow Cell Priming Kit V14 (EXP-FLP004)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind

Instrumental
  • Pipeta y puntas P1000
  • Pipeta y puntas P20
  • Cubeta con hielo
  • Vortex mixer

We recommend washing and reloading the flow cell after ~24 hours of sequencing.

We recommend washing and reloading the flow cell after ~24 hours of sequencing. For this method, the flow cell is washed after ~24 hours of sequencing to restore pores to ensure efficient data acquisition. After an additional 24 hours of sequencing, the flow cell is washed and reloaded a second time. For this reason, enough library was generated for 3 flow cell loads in the adapter ligation step of the protocol.

  • This washing procedure aims to remove most of the initial library and unblock the pores to prepare the flow cell for the loading of a subsequent library.
  • Data acquisition in MinKNOW should be paused during the wash procedure and library loading.
  • After the flow cell has been washed, the next library can be loaded.

You can navigate to the Pore Activity or the Pore Scan Results plot to see pore availability.

Place the tube of Wash Mix (WMX) on ice. Do not vortex the tube.

Thaw one tube of Wash Diluent (DIL) at room temperature.

Mix the contents of Wash Diluent (DIL) thoroughly by vortexing, then spin down briefly and place on ice.

In a fresh 1.5 ml Eppendorf DNA LoBind tube, prepare the following Flow Cell Wash Mix:

Reagent Volume per flow cell
Wash Mix (WMX) 2 μl
Wash Diluent (DIL) 398 μl
Total 400 μl

Mix well by pipetting, and place on ice. Do not vortex the tube.

Pause the sequencing experiment in MinKNOW, and leave the flow cell in the device.

Before removing the waste fluid, ensure that the flow cell priming port cover and SpotON sample port cover are closed, as indicated in the figure below.

IMPORTANTE

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove all fluid from the waste channel through waste port 1 using a P1000 pipette.

As both the flow cell priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Slide the flow cell priming port cover clockwise to open.

Flow Cell Loading Diagrams Step 2 (3)

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

Slowly load 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.
  4. Set a timer for a 5 minute incubation.

Loading wash mix 200ul slow min grid

Once the 5 minute incubation is complete, carefully load the remaining 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take the remaining 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.

Loading wash mix 200ul slow min grid

Close the priming port and wait for 1 hour.

Flow Cell Loading Diagrams Step 9

Before removing the waste fluid a second time, ensure that the flow cell priming port cover and SpotON sample port cover are closed, as indicated in the figure below.

IMPORTANTE

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove all fluid from the waste channel through waste port 1 using a P1000 pipette.

As both the flow cell priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

IMPORTANTE

The buffers used in this process are incompatible with conducting a Flow Cell Check step prior to loading the subsequent library. However, number of available pores will be reported after the next pore scan.

Thaw the Sequencing Buffer (SB), Library Beads (LIB) or Library Solution (LIS, if using), Flow Cell Tether (FCT) and Flow Cell Flush (FCF) at room temperature, before mixing by vortexing. Then spin down before storing on ice.

IMPORTANTE

Para obtener un rendimiento de secuenciación óptimo y mejorar el rendimiento de las celdas de flujo MinION R10.4.1 (FLO-MIN114), recomendamos añadir seroalbúmina bovina (BSA), en una concentración total de 0,2 mg/ml, a la mezcla de cebado de la celda de flujo.

Nota: No se aconseja utilizar ningún otro tipo de albúmina (p. ej., seroalbúmina humana recombinante).

Para preparar la mezcla de cebado con seroalbúmina bovina, mezclar Flow Cell Flush (FCF) y Flow Cell Tether (FCT) como se indica a continuación. Mezclar con la pipeta a temperatura ambiente.

Nota: Hemos cambiando el formato de algunos de los viales de nuestros kits, de tubos monouso a botellas de mayor cantidad.

Formato en tubos monouso En el tubo de Flow Cell Flush (FCF), añadir directamente 5 µl de seroalbúmina bovina (BSA), a una concentración de 50 mg/ml y 30 µl de Flow Cell Tether (FCT).

Formato en botella: En un tubo proporcionado a la cantidad de celdas de flujo que se vayan a utilizar, mezclar los siguientes reactivos:

Reactivo Volumen por celda de flujo
Flow Cell Flush (FCF) 1 170 µl
Bovine Serum Albumin (BSA) a una concentración de 50 mg/ml 5 µl
Flow Cell Tether (FCT) 30 µl
Volumen total 1 205 µl

Slide the priming port cover clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

Cargar 800 μl de solución en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.

Flow Cell Loading Diagrams Step 04 V5 SPANISH

Mezclar con la pipeta, minuciosamente, el contenido del vial Library Beads (LIB).

IMPORTANTE

Este vial contiene microesferas en suspensión. Las microesferas precipitan muy rápido; por eso, es fundamental mezclarlas justo antes de usar.

En la mayoría de experimentos de secuenciación, se recomienda usar Library Beads (LIB) . El reactivo Library Solution (LIS) está indicado para bibliotecas de ADN más viscosas.

En un tubo nuevo de 1,5 ml Eppendorf DNA LoBind, preparar la biblioteca de la siguiente manera:

Reactivo Volumen por celda de flujo
Sequencing Buffer (SB) 37,5 µl
Library Beads (LIB) mezcladas justo antes de usar, o Library Solution (LIS), si se requiere 25,5 µl
Biblioteca de ADN 12 µl
Total 75 µl

Complete the flow cell priming:

  1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
  2. Load 200 µl of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the introduction of air bubbles.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5

Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.

Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.

Flow Cell Loading Diagram Step 07 V5 SPANISH

Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the MinION or GridION device lid.

Flow Cell Loading Diagrams Step 8

Flow Cell Loading Diagrams Step 9

Select "Start pore scan" before resuming sequencing to check recovery rate of pores.

Allow the pore scan to complete and ensure sufficient pores are available to continue sequencing.

Select "Resume run" to continue the sequencing run.

FIN DEL PROCESO

Repeat the "Washing and reloading a MinION flow cell" step up to two times, for a total of three library loads to maximise data acquisition.

10. Data acquisition and basecalling

Aspectos generales del análisis de datos de nanoporos

Para obtener una descripción completa del análisis de datos de nanoporos, que incluya distintas posibilidades para el análisis de identificación y postidentificicación de bases, consultar el documento Data Analysis.

How to start sequencing

The sequencing device control and data acquisition are carried out by the MinKNOW software. Please ensure MinKNOW is installed on your computer. Further instructions for setting up your sequencing run can be found in the MinKNOW protocol.

Sequencing settings for the reduced representation methylation sequencing (RRMS) protocol:

  • Select the Ligation Sequencing Kit (SQK-LSK114) in kit selection.

  • Turn basecalling OFF.
    Note: Basecalling will be carried out post-sequencing in the downstream analysis section of the protocol.

  • Turn Adaptive Sampling ON, and select Enrich.
    Input the human reference file for alignment and the .bed file for enumerating regions (check online catalogue for the human RRMS .bed file).

  • Set the run duration for a minimum of 96 hours.

  • Set up your desired output parameters.
    To ensure the downstream analysis functions correctly, we recommend keeping the default options of the output file format (.POD5).

  • Click “Start” begin the sequencing run.

11. Downstream analysis

IMPORTANTE

Software versions

See below the software versions used in this guide. Please note, newer versions of the software may not be compatible with commands shown in this guide.

Software Version
dorado v0.7.3
modkit v0.2.8
wf-human-variation v2.3.0
mosdepth v0.3.8

Basecalling and demux:

Dorado stand-alone can be used for basecalling using the dorado basecaller. Open a terminal and enter the following commands:

dorado basecaller hac,5mCG_5hmCG \
--secondary “no” -Y \
--reference {reference_fasta} {input_pod5_folder} \
| samtools view -e '[qs] >= {qscore_filter}' \
--output {out_pass_bam} \
--unoutput {out_fail_bam}

Notes:

  • We recommend using the high accuracy model (hac) for RRMS sequencing runs. However, if using the super accurate model (sup), ensure you are utilizing the correct model in the above command.

  • Alignment can be performed while basecalling by providing a reference FASTA file, the recommended human reference file can be downloaded here.

  • Secondary alignments are discarded by using “--secondary no” and -Y option is enabled, to allow soft-clipping supplementary alignments.

  • We recommend setting the qscore filter to 10.

  • Please note, GPU compute is needed to perform basecalling with dorado, more information on how to run dorado can be found in the github repository.

Coverage analysis:

RRMS target bed file can be downloaded from the AS catalogue available here.

Mosdepth is used to check coverage on target regions for the barcodes of interest:

mosdepth -x -t 8 -n -b {target_bed} {out_prefix} {input_pass_bam}

Modification calling:

Human variation pipeline is used to aggregate modifications per genomic positions using modkit.

The workflow is available in the following repository: wf-human-variation github.

The documentation can be found in the following space: wf-human-variation EPI2ME page

Modification calling:

For most RRMS runs we recommend running the following command:

nextflow run https://github.com/epi2me-labs/wf-human-variation \
-profile singularity \  
--mod \
--bam <bam> \
--bed RRMS_human_hg38.bed \
--ref GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta \
--sample_name <sample> --out_dir <output_dir>

(Optional) For haplotype-specific methylation:

If haplotype-specific methylation is required, you can provide options “--snp –phased“ to aggregate modifications identified on each of the haplotypes (i.e. one bedmethyl file for each of the haplotypes will be generated):

nextflow run https://github.com/epi2me-labs/wf-human-variation \
-profile singularity \  
--mod --snp --phased \
--bam <bam> \
--bed RRMS_human_hg38.bed \
--ref GCA_000001405.15_GRCh38_no_alt_analysis_set.fasta \
--sample_name <sample> --out_dir <output_dir>

Note: For this specific analysis, a sample coverage of >30X is recommended.

Differentially methylated regions detection:

For detection of differentially methylated regions across different samples “modkit dmr” can be used.

For more information check the modkit documentation available here.

Visualisation:

The BAM file(s) generated by dorado contains canonical bases as well as per-read modifications stored in MM and ML BAM tags. To visualise the per-read modification calls, IGV can be used to load the BAM file and set "colour reads as" to “base modification 2-color (all)”.

If phasing was performed using wf-human-variation pipeline, the haplotagged BAM file can be uploaded in IGV and alignments can be grouped by haplotype using the IGV option “group by” and selecting “phase”.

Per-position methylation frequencies can also be visualised in IGV by using BIGWIG format. For this, modkit is used to generate BEDGRAPH files using the following command:

modkit pileup --cpg --combine-strands --bedgraph \ 
--threads 10 --prefix {out_prefix} \  
--ref {reference_fasta} \ 
{out_folder} {input_pass_bam}

Please note, a different bedgraph file will be created for each of the modifications present, in this case 5mC and 5hmC.

Next, bedGraphToBigWig is used to generate bigwig files which can be uploaded together with your BAM file in IGV:

bedtools sort -i {out_folder}/{prefix}_m_CG0_combined.bedgraph | cut -f 1-4 > {out_folder}/{prefix}_m_CG0_combined_sort.bedgraph

bedGraphToBigWig {out_folder}/{prefix}_m_CG0_combined_sort.bedgraph {reference_chrSize} {out_mod_bed_agg_filt_bigwig}

Benchmarking results

For information about benchmarking the performance of RRMS for human samples, please see our RRMS performance document

12. Reutilización y devolución de celdas de flujo

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a entre 2 °C y 8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

CONSEJO

Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.

Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí puede encontrar las instrucciones para devolver celdas de flujo.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

13. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Baja calidad de la muestra

Observación Posible causa Comentarios y acciones recomendadas
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) El método de extracción de ADN no proporciona la pureza necesaria Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Considere realizar un paso adicional de limpieza SPRI.
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.
El ARN tiene una longitud de fragmento más corta de lo esperado El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.

Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas.

Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure

Observación Posible causa Comentarios y acciones recomendadas
Escasa recuperación Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas.

2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza.
Escasa recuperación Los fragmentos de ADN son más cortos de lo esperado Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. SPRI cleanup
Escasa recuperación tras la preparación de extremos El paso de lavado utilizó etanol a <70 % Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto.

14. Issues during the sequencing run

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Menos poros al inicio de la secuenciación que después de verificar la celda de flujo

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo Se introdujo una burbuja de aire en la matriz de nanoporos Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra.
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La celda de flujo no está colocada correctamente Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION).
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Error en el script de MinKNOW

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error en el script"
Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales.

Pore occupancy below 40%

Observation Possible cause Comments and actions
Pore occupancy <40% Not enough library was loaded on the flow cell Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol"
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0 The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0 No tether on the flow cell Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming.

Longitud de lectura más corta de lo esperado

Observación Posible causa Comentarios y acciones recomendadas
Longitud de lectura más corta de lo esperado Fragmentación no deseada de la muestra de ADN La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca.

1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore.

2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. DNA gel2 En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado.

3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente.

Gran proporción de poros no disponibles

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros)

image2022-3-25 10-43-25 Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles.
Hay contaminantes presentes en la muestra Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones:

1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004)
2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas.

Gran proporción de poros inactivos

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) Se han introducido burbujas de aire en la celda de flujo Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell
Gran proporción de poros inactivos/no disponibles Ciertos compuestos copurificados con ADN Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas.

1. Consulte la página Plant leaf DNA extraction method.
2. Limpiar usando el kit QIAGEN PowerClean Pro.
3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g.
Gran proporción de poros inactivos/no disponibles Hay contaminantes presentes en la muestra Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Reducción de la velocidad de secuenciación y del índice de calidad Qscore en una fase avanzada de la secuenciación

Observación Posible causa Comentarios y acciones recomendadas
Reducción de la velocidad de secuenciación y el índice de calidad Qscore en una fase avanzada de la secuenciación En la química del kit 9 (p. ej., SQK-LSK109), cuando la celda de flujo está sobrecargada con la biblioteca se observa un consumo rápido de combustible (consulte el protocolo correspondiente a su biblioteca de ADN para ver las recomendaciones) Añadir más combustible a la celda de flujo, siguiendo las instrucciones en el protocolo de MinKNOW. En futuros experimentos, cargar cantidades menores de biblioteca en la celda de flujo.

Fluctuación de la temperatura

Observación Posible causa Comentarios y acciones recomendadas
Fluctuación de la temperatura La celda de flujo ha perdido contacto con el dispositivo Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica.

Error al intentar alcanzar la temperatura deseada

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez transcurrido ese tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo, procure que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Encontrará más información sobre el control de temperatura del MinION en este enlace.

Guppy – no input .fast5 was found or basecalled

Observation Possible cause Comments and actions
No input .fast5 was found or basecalled input_path did not point to the .fast5 file location The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.
No input .fast5 was found or basecalled The .fast5 files were in a subfolder at the input_path location To allow Guppy to look into subfolders, add the --recursive flag to the command

Guppy – no Pass or Fail folders were generated after basecalling

Observation Possible cause Comments and actions
No Pass or Fail folders were generated after basecalling The --qscore_filtering flag was not included in the command The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy – unusually slow processing on a GPU computer

Observation Possible cause Comments and actions
Unusually slow processing on a GPU computer The --device flag wasn't included in the command The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

Last updated: 12/13/2024

Document options

GridION