PromethION: Protocol
PCR-cDNA Barcoding Kit (SQK-PCB111.24) V PCB_9155_v111_revL_18May2022
The fastest and simplest protocol for full-length cDNA sequencing
- Offering highest yield
- Higher yields than traditional cDNA synthesis
- Splice variants and fusion transcripts
- Multiplex up to 24 different samples
- Compatible with R9.4.1 flow cells only
For Research Use Only
This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
Library preparation
- 4. Reverse transcription and strand-switching
- 5. Selecting for full-length transcripts by PCR
- 6. Adapter addition
- 7. Priming and loading the flow cell
测序及数据分析
故障种类及处理方法
概览
The fastest and simplest protocol for full-length cDNA sequencing
- Offering highest yield
- Higher yields than traditional cDNA synthesis
- Splice variants and fusion transcripts
- Multiplex up to 24 different samples
- Compatible with R9.4.1 flow cells only
For Research Use Only
This is a Legacy product This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com.
1. Overview of the protocol
重要
This is a Legacy product
This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.
PCR-cDNA Barcoding Kit features:
This kit is highly recommended for users who:
- wish to multiplex up to 24 samples to reduce price per sample
- would like to identify and quantify full-length transcripts
- are looking for a faster and simpler method for cDNA synthesis: ~210 minutes library prep + variable time for PCR
- want to explore isoforms, splice variants and fusion transcripts using full-length cDNAs
- wish to start from total RNA
- have a low starting amount of RNA
- would like to generate high amounts of cDNA data
Introduction to the PCR-cDNA Barcoding Kit protocol
This protocol describes how to carry out sequencing of multiple cDNA samples using a strand-switching method and the PCR-cDNA Barcoding Kit (SQK-PCB111.24). There are 24 unique barcodes available, allowing the user to pool up to 24 different samples in one sequencing experiment. During the strand-switching step, a UMI is incorporated, before the double-stranded cDNA is amplified by PCR using primers containing 5' tags. The amplified and barcoded samples are then pooled together and the Rapid Sequencing Adapters are added to the pooled mix.
A control experiment can be completed first using RNA Control Sample (RCS) from the RNA Control Expansion (EXP-RCS001) as your input to troubleshoot your library preparation or to become familiar with the protocol.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Extract your RNA, and check its length, quantity and purity The quality checks performed during the protocol are essential in ensuring experimental success
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
**Library preparation**
You will need to:
- Using the strand-switching protocol, prepare full-length cDNAs from Poly(A)+ RNA (or total RNA) with the incorporation of the UMI
- Amplify the cDNAs by PCR, adding rapid attachment barcode primers during the PCR step
- Attach sequencing adapters to the PCR products
- Prime the flow cell, and load your cDNA library into the flow cell
Sequencing and analysis
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Optional: Start the EPI2ME software and select a workflow for further analysis
重要
Compatibilities of this protocol
This protocol should only be used in combination with:
- PCR-cDNA Barcoding Kit (SQK-PCB111.24)
- R9.4.1 flow cells (FLO-PRO002)
- Flow Cell Wash Kit (EXP-WSH004)
- RNA Control Expansion (EXP-RCS001)
2. Equipment and consumables
材料
- 4 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 200 ng total RNA
- PCR-cDNA Barcoding Kit (SQK-PCB111.24)
耗材
- Agencourt RNAClean XP磁珠(Beckman Coulter™,A63987)
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Lambda Exonuclease (NEB, Cat # M0262L)
- NEBNext®快速连接反应缓冲液(NEB,B6058)
- 2M U/ml 的T4 DNA连接酶(NEB,M0202M)
- 10 mM dNTP solution (e.g. NEB N0447)
- LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
- USER (Uracil-Specific Excision Reagent) Enzyme (NEB, cat # M5505L)
- Exonuclease I (NEB, Cat # M0293)
- Nuclease-free water (e.g. ThermoFisher, AM9937)
- Freshly prepared 70% ethanol in nuclease-free water
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml thin-walled PCR tubes
- Qubit RNA HS Assay(RNA高灵敏度检测)试剂盒(ThermoFisher,Q32852)
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)
- Qubit™ 分析管(Invitrogen, Q32856)
仪器
- Hula混匀仪(低速旋转式混匀仪)
- 适用于1.5ml Eppendorf 离心管的磁力架
- 迷你离心机
- 涡旋混匀仪
- 热循环仪
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
- 盛有冰的冰桶
- 计时器
- Qubit荧光计(或用于质控检测的等效仪器)
- Agilent Bioanalyzer (or equivalent)
For this protocol, you will need 4 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 200 ng total RNA.
起始RNA
选择符合质量和浓度要求的起始RNA至关重要的。使用过少或过多的RNA,或者质量较差的RNA(如,高度碎片化、或含有化学污染物的RNA)都会影响文库制备。
有关如何对DNA样品进行质控,请参考起始DNA/RNA质控。
有关使用RNA作为起始材料的更多信息,请参阅以下链接:
您亦可在纳米孔社区的DNA/RNA Handling 页面找到上述文件。
第三方试剂
Oxford Nanopore Technologies推荐您使用本实验指南中提及的所有第三方试剂,并已对其加以验证。我们尚未对其它替代试剂进行测试。
我们建议您按制造商说明准备待用的第三方试剂.
PCR-cDNA Barcoding Kit (SQK-PCB111.24) contents
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Strand Switching Primer II | SSPII | Violet | 1 | 350 |
RT Primer | RTP | Yellow | 1 | 200 |
cDNA RT Adapter | CRTA | Amber | 1 | 200 |
Annealing Buffer | AB | Orange | 1 | 200 |
Rapid Adapter T | RAP T | Green | 1 | 10 |
RAP Dilution Buffer (or Adapter Buffer) | RDB (or ADB) | Clear | 1 | 100 |
Elution Buffer | EB | Black | 2 | 1,500 |
Short Fragment Buffer | SFB | White | 4 | 7,500 |
Sequencing Buffer II | SBII | Red | 1 | 500 |
Loading Beads II | LBII | Pink | 1 | 360 |
Loading Solution | LS | White cap, pink label | 1 | 400 |
Barcode Primers 1-24 | BP01-24 | White | 24 | 10 |
Flush Buffer | FB | Blue | 6 | 1,170 |
Flush Tether | FLT | White cap, purple label | 1 | 200 |
重要
RAP Dilution Buffer (RDB) and Adapter Buffer (ADB) can be used interchangably with this kit.
As we move into the Legacy and Discontinuation phases for this kit, we have replaced some of the vials with our newer versions in recent production batches.
The original RAP Dilution Buffer (RDB) vials and our new Adapter Buffer (ADB) vials contain the same reagent and can be used interchangeably with this kit.
RNA Control Expansion (EXP-RCS001)
The RNA Control Expansion (EXP-RCS001) provides users with RNA Control Sample (RCS) to replace their sample input when performing a control experiment for troubleshooting purposes in the cDNA-PCR Sequencing (SQK-PCS111) and the PCR-cDNA Barcoding Kit (SQK-PCB111.24).
Name | Acronym | Number of vials | Cap colour | Fill volume per vial (µl) |
---|---|---|---|---|
RNA Control Sample | RCS | 3 | Yellow | 25 |
重要
Rapid Adapter T (RAP T) used in this kit and protocol is not interchangeable with other sequencing adapters.
Barcode primer sequences
Below are the barcode primer sequences for PCR-cDNA Barcoding Kit (SQK-PCB109 and SQK-PCB111.24).
Component | Forward sequence | Reverse sequence |
---|---|---|
BP01 | CAAGAAAGTTGTCGGTGTCTTTGTGAC | CAAGAAAGTTGTCGGTGTCTTTGTGTT |
BP02 | CTCGATTCCGTTTGTAGTCGTCTGTAC | CTCGATTCCGTTTGTAGTCGTCTGTTT |
BP03 | CGAGTCTTGTGTCCCAGTTACCAGGAC | CGAGTCTTGTGTCCCAGTTACCAGGTT |
BP04 | CTTCGGATTCTATCGTGTTTCCCTAAC | CTTCGGATTCTATCGTGTTTCCCTATT |
BP05 | CCTTGTCCAGGGTTTGTGTAACCTTAC | CCTTGTCCAGGGTTTGTGTAACCTTTT |
BP06 | CTTCTCGCAAAGGCAGAAAGTAGTCAC | CTTCTCGCAAAGGCAGAAAGTAGTCTT |
BP07 | CGTGTTACCGTGGGAATGAATCCTTAC | CGTGTTACCGTGGGAATGAATCCTTTT |
BP08 | CTTCAGGGAACAAACCAAGTTACGTAC | CTTCAGGGAACAAACCAAGTTACGTTT |
BP09 | CAACTAGGCACAGCGAGTCTTGGTTAC | CAACTAGGCACAGCGAGTCTTGGTTTT |
BP10 | CAAGCGTTGAAACCTTTGTCCTCTCAC | CAAGCGTTGAAACCTTTGTCCTCTCTT |
BP11 | CGTTTCATCTATCGGAGGGAATGGAAC | CGTTTCATCTATCGGAGGGAATGGATT |
BP12 | CCAGGTAGAAAGAAGCAGAATCGGAAC | CCAGGTAGAAAGAAGCAGAATCGGATT |
BP13 | CAGAACGACTTCCATACTCGTGTGAAC | CAGAACGACTTCCATACTCGTGTGATT |
BP14 | CAACGAGTCTCTTGGGACCCATAGAAC | CAACGAGTCTCTTGGGACCCATAGATT |
BP15 | CAGGTCTACCTCGCTAACACCACTGAC | CAGGTCTACCTCGCTAACACCACTGTT |
BP16 | CCGTCAACTGACAGTGGTTCGTACTAC | CCGTCAACTGACAGTGGTTCGTACTTT |
BP17 | CACCCTCCAGGAAAGTACCTCTGATAC | CACCCTCCAGGAAAGTACCTCTGATTT |
BP18 | CCCAAACCCAACAACCTAGATAGGCAC | CCCAAACCCAACAACCTAGATAGGCTT |
BP19 | CGTTCCTCGTGCAGTGTCAAGAGATAC | CGTTCCTCGTGCAGTGTCAAGAGATTT |
BP20 | CTTGCGTCCTGTTACGAGAACTCATAC | CTTGCGTCCTGTTACGAGAACTCATTT |
BP21 | CGAGCCTCTCATTGTCCGTTCTCTAAC | CGAGCCTCTCATTGTCCGTTCTCTATT |
BP22 | CACCACTGCCATGTATCAAAGTACGAC | CACCACTGCCATGTATCAAAGTACGTT |
BP23 | CCTTACTACCCAGTGAACCTCCTCGAC | CCTTACTACCCAGTGAACCTCCTCGTT |
BP24 | CGCATAGTTCTGCATGATGGGTTAGAC | CGCATAGTTCTGCATGATGGGTTAGTT |
3. 计算机要求及软件
PromethION 24/48 的IT配置要求
PromethION设备的硬件能够同时控制多达24个(适用于P24型号)或48个(适用于P48型号)测序实验,并采集数据。此外,设备借助高性能GPU技术,可以实时识别碱基。 请参阅 PromethION IT 配置要求文档,了解更多信息。
PromethION 2 Solo 的IT配置要求
作为一款小型台式测序设备,PromethION 2 Solo可独立或同时运行两张测序芯片。您只需将PromethION 2 Solo连接到GridION Mk1或符合最低技术规格要求的独立计算机,即可实现数据的实时采集和分析。欲了解更多信息,请参阅PromethION 2 Solo IT 配置要求文档。
Software for nanopore sequencing
MinKNOW
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
EPI2ME (optional)
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.
测序芯片质检
我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片12周之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :
测序芯片 | 芯片上的活性孔数确保不少于 |
---|---|
Flongle 测序芯片 | 50 |
MinION/GridION 测序芯片 | 800 |
PromethION 测序芯片 | 5000 |
** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。
4. Reverse transcription and strand-switching
材料
- 4 ng enriched RNA (Poly(A)+ RNA or ribodepleted) or 200 ng total RNA
- cDNA RT Adapter (CRTA)
- Annealing Buffer (AB)
- Short Fragment Buffer (SFB)
- RT Primer (RTP)
- Strand Switching Primer II (SSPII)
耗材
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- NEBNext®快速连接反应缓冲液(NEB,B6058)
- 2M U/ml 的T4 DNA连接酶(NEB,M0202M)
- Lambda Exonuclease (NEB, Cat # M0262L)
- USER (Uracil-Specific Excision Reagent) Enzyme (NEB, cat # M5505L)
- Agencourt RNAClean XP磁珠(Beckman Coulter™,A63987)
- 10 mM dNTP solution (e.g. NEB cat # N0447)
- Maxima H Minus Reverse Transcriptase (200 U/µl) with 5x RT Buffer (ThermoFisher, cat # EP0751)
- RNaseOUT™, 40 U/μl (Life Technologies, cat # 10777019)
- 1.5 ml Eppendorf DNA LoBind离心管
- 0.2 ml thin-walled PCR tubes
- Qubit RNA HS Assay(RNA高灵敏度检测)试剂盒(ThermoFisher,Q32852)
- Qubit™ 分析管(Invitrogen, Q32856)
仪器
- 迷你离心机
- 热循环仪
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
- Qubit荧光计(或用于质控检测的等效仪器)
Thaw the following reagents, then spin down briefly using a microfuge and mix as indicated in the table below. Then place the reagents on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
cDNA RT Adapter (CRTA) | ✓ | ✓ | ✓ |
Annealing Buffer (AB) | ✓ | ✓ | ✓ |
Short Fragment Buffer (SFB) | ✓ | ✓ | ✓ |
RT Primer (RTP) | ✓ | ✓ | ✓ |
Strand Switching Primer II (SSPII) | ✓ | ✓ | ✓ |
NEBNext® Quick Ligation Reaction Buffer | ✓ | ✓ | Mix by vortexing |
T4 DNA Ligase 2M U/ml | Not frozen | ✓ | ✓ |
RNaseOUT | Not frozen | ✓ | ✓ |
Lambda Exonuclease | Not frozen | ✓ | ✓ |
Uracil-Specific Excision Reagent (USER) | Not frozen | ✓ | ✓ |
10 mM dNTP solution | ✓ | ✓ | ✓ |
Maxima H Minus Reverse Transcriptase | Not frozen | ✓ | ✓ |
Maxima H Minus 5x RT Buffer | ✓ | ✓ | Mix by vortexing |
重要
It is important that the NEBNext Quick Ligation Reaction Buffer is mixed well by vortexing.
Check for any visible precipitate; vortexing for at least 30 seconds may be required to solubilise all precipitate.
可选操作
To run a control experiment, replace your sample input with 10 μl diluted RNA Control Sample (RCS) from the RNA Control Expansion (EXP-RCS001) as follows:
- Thaw the RNA Control Sample (RCS) at room temperature, briefly spin down and mix well by pipetting.
- Dilute the RNA Control Sample (RCS) in a 1.5 ml Eppendorf DNA LoBind tube as follows:
Reagent | Volume |
---|---|
RNA Control Sample (RCS) | 1 μl |
Nuclease-free water | 14 μl |
Total | 15 μl |
Note: This will provide enough volume for 3 samples, adjust your volumes accordingly for the number of samples you wish to run in your control experiment.
- Mix thoroughly by pipetting 10-20 times and briefly spin down.
- Take forward 4 μl of the diluted RNA Control Sample (RCS) per sample and make up each volume to 10 μl with nuclease-free water as follows:
Reagent | Volume |
---|---|
Diluted RNA Control Sample (RCS) | 4 μl |
Nuclease-free water | 6 μl |
Total volume per sample | 10 μl |
- Mix by flicking the tube and spin down.
- Use the 10 μl of diluted RNA Control Sample (RCS) as your RNA input.
For each sample, prepare the RNA in nuclease-free water.
- Transfer 4 ng Poly(A)+ RNA, or 200 ng total RNA into a 1.5 ml Eppendorf DNA LoBind tube
- Adjust the volume up to 10 µl with nuclease-free water
- Mix by flicking the tube to avoid unwanted shearing
- Spin down briefly in a microfuge
Prepare the following in a 0.2 ml PCR tube per sample:
Reagent | Volume |
---|---|
RNA | 10 µl |
cDNA RT Adapter (CRTA) | 1 µl |
Annealing Buffer (AB) | 1 µl |
Total volume | 12 µl |
提示
The cDNA RT Adapter (CRTA) is a double stranded adapter with a poly(T) overhang which anneals to the very end of the poly(A) tail of the RNA strand. This ensures that the full length of the RNA is reverse transcribed and that the poly(A) length can be estimated accurately. Annealing Buffer (AB) has been included to improve CRTA ligation.
Mix gently by flicking the tubes, and spin down.
Incubate the reactions in the thermal cycler at 60°C for 5 mins, then cool for 10 minutes at room temperature.
To each of the 0.2 ml PCR tubes containing you RNA sample(s), add the following:
Reaction | Volume |
---|---|
RNA sample (from previous step) | 12 µl |
NEBNext® Quick Ligation Reaction Buffer | 3.6 µl |
T4 DNA Ligase 2M U/ml | 1.4 µl |
RNaseOUT | 1 µl |
Total volume (including all reagents) | 18 µl |
Ensure the components are thoroughly mixed by flicking the tubes and spin down.
Incubate for 10 minutes at room temperature.
To each of the 0.2 ml PCR tubes, add the following:
Reagent | Volume |
---|---|
RNA sample (from previous step) | 18 µl |
Lambda Exonuclease | 1 µl |
USER (Uracil-Specific Excision Reagent) | 1 µl |
Total volume (including all reagents) | 20 µl |
提示
The Lambda Exonuclease and Uracil-Specific Excision Reagent (USER) are third-party reagents used in the preparation of the reverse transcription step. Lambda Exonuclease and USER digest the bottom strand of the ligated CRTA so that the RT Primer (RTP) can bind the CRTA sequence as a primer for the reverse transcription of the RNA.
Ensure the components are thoroughly mixed by flicking the tubes and spin down.
Incubate for 15 minutes at 37°C in the thermal cycler.
Transfer each sample to clean 1.5 ml Eppendorf DNA LoBind tubes.
Resuspend the RNase-free XP beads by vortexing.
Add 36 µl of resuspended RNase-free XP beads to each reaction and mix gently by flicking the tubes.
将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育5分钟。
Spin down the samples and pellet on a magnet. Keep the tubes on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 100 µl of Short Fragment Buffer (SFB) without disturbing the pellet. Remove the SFB using a pipette and discard.
Repeat the previous step.
Spin down and place the tubes back on the magnet. Pipette off any residual buffer. Briefly allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
Remove the tubes from the magnetic rack and resuspend each pellet in 12 µl of nuclease-free water.
Incubate at room temperature for 10 minutes.
Pellet the beads on a magnet until the eluate is clear and colourless.
Remove and retain 12 µl of eluate into a clean 0.2 ml thin-walled PCR tube per sample.
To each of the 0.2 ml PCR tubes, add the following:
Reagents | Volume |
---|---|
Eluted sample (from previous step) | 12 µl |
RT Primer (RTP) | 1 µl |
dNTPs (10 mM) | 1 µl |
Total volume (including all reagents) | 14 µl |
提示
RT Primer (RTP) is a single stranded primer and binds upstream of the poly(A) tail of the RNA transcript to prime for reverse transcription.
Ensure the components are thoroughly mixed by flicking the tubes and spin down.
Incubate the reaction for 15 minutes at room temperature.
To each of the 0.2 ml PCR tubes, add the following:
Reagents | Volume |
---|---|
RT primed sample (from previous step) | 14 µl |
Maxima H Minus 5x RT Buffer | 4.5 µl |
RNaseOUT | 1 µl |
Strand Switching Primer II (SSPII) | 2 µl |
Total (including all reagents) | 21.5 µl |
提示
Strand Switching Primer II (SSPII) base pairs to the deoxycytidine present at the 5' end of the first cDNA strand synthesised. This allows the reverse transcriptase to "strand-switch" for synthesis of the second cDNA strand.
Mix gently by flicking the tubes, and spin down.
Incubate at 42°C for 2 minutes in the thermal cycler.
Add 1 µl of Maxima H Minus Reverse Transcriptase to each tube. The total volume will be 22.5 µl per tube.
Mix gently by flicking the tubes, and spin down.
Incubate using the following protocol using a thermal cycler:
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Reverse transcription and strand-switching | 42°C | 90 mins | 1 |
Heat inactivation | 85°C | 5 mins | 1 |
Hold | 4°C | ∞ |
步骤结束
Take your samples forward into the next step. However, at this point it is also possible to store the sample at -20°C overnight.
5. Selecting for full-length transcripts by PCR
材料
- Barcode Primers (BP01-24)
- Elution Buffer (EB)
耗材
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- LongAmp Hot Start Taq 2X Master Mix (NEB, M0533)
- Exonuclease I (NEB, Cat # M0293)
- Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
- Freshly prepared 70% ethanol in nuclease-free water
- 0.2 ml PCR tubes
- 1.5 ml Eppendorf DNA LoBind 离心管
- Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)
- Qubit™ 分析管(Invitrogen, Q32856)
仪器
- 热循环仪
- 涡旋混匀仪
- Hula混匀仪(低速旋转式混匀仪)
- 适用于1.5ml Eppendorf 离心管的磁力架
- 盛有冰的冰桶
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
- Qubit荧光计(或用于质控检测的等效仪器)
- Agilent Bioanalyzer (or equivalent)
重要
This kit enables multiplexing of up to 24 samples. The default method allows you to perform one 25 µl PCR reaction per sample. If multiplexing two or three samples, however, two separate PCR reactions per sample should be performed; if running just one sample, four separate PCR reactions should be performed as per the cDNA-PCR Sequencing Kit protocol (SQK-PCS111). These recommendations aim to ensure that enough PCR product is generated for optimal flow cell performance.
Reverse transcriptase is a PCR inhibitor and the reverse-transcribed sample must be diluted enough for PCR to take place.
Note: Use one set of Barcode Primers per sample.
Thaw the following reagents, then spin down briefly using a microfuge and mix as indicated in the table below. Then place the reagents on ice.
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
Barcode Primers (BP01 - BP24) | ✓ | ✓ | ✓ |
Elution Buffer (EB) | ✓ | ✓ | ✓ |
LongAmp Hot Start Taq 2X Master Mix | ✓ | ✓ | ✓ |
Exonuclease I | Not frozen | ✓ | ✓ |
Spin down the reverse-transcribed RNA samples.
Prepare a separate 0.2 ml PCR tube for each sample and add 5 μl of reverse-transcribed RNA per tube.
重要
Only 5 µl of the reverse-transcribed sample is to be taken forward. Do NOT use all the 22.5 µl of the reverse transcription reaction in a single PCR reaction.
In each of the 0.2 ml PCR tubes containing reverse-transcribed RNA sample, prepare the following reaction at room temperature:
Reagent | Volume |
---|---|
Reverse-transcribed sample (from previous step) | 5 μl |
Unique Barcode Primer (BP01-24) | 0.75 μl |
Nuclease-free water | 6.75 μl |
2x LongAmp Hot Start Taq Master Mix | 12.5 μl |
Total (including all reagents) | 25 μl |
Mix gently by pipetting.
Amplify using the following cycling conditions.
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Initial denaturation | 95°C | 30 secs | 1 |
Denaturation | 95°C | 15 secs | 10-18* |
Annealing | 62°C | 15 secs | 10-18* |
Extension | 65°C | 60 secs per kb | 10-18* |
Final extension | 65°C | 6 mins | 1 |
Hold | 4°C | ∞ |
*We recommend 14 cycles as a starting point. However, the number of cycles can be adjusted between the values shown according to experimental needs.
For further information, please read The effect of varying the number of PCR cycles in the PCR-cDNA Sequencing Kit document.
Add 1 μl Exonuclease I directly to each PCR tube. Mix by pipetting.
提示
Exonuclease I is added to remove any excess primers which have not successfully annealed.
Incubate the reactions at 37°C for 15 minutes, followed by 80°C for 15 minutes in the thermal cycler.
Transfer each sample to a clean 1.5 ml Eppendorf DNA LoBind tube.
Resuspend the AMPure XP beads by vortexing.
Add 20 µl of resuspended AMPure XP beads to each 1.5 ml Eppendorf DNA LoBind tube.
Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
Prepare 5 ml of fresh 70% ethanol in nuclease-free water.
Spin down the samples and pellet on a magnet. Keep the tubes on the magnet, and pipette off the supernatant.
Keep the tubes on the magnet and wash the beads with 200 µl of freshly-prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
重复上述步骤。
Spin down and place the tubes back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellets to the point of cracking.
Remove the tubes from the magnetic rack and resuspend each pellet in 12 µl of Elution Buffer (EB).
Incubate at room temperature for 10 minutes.
Pellet the beads on the magnet until the eluate is clear and colourless.
Remove and retain 12 µl of each eluate into a separate clean 1.5 ml Eppendorf DNA LoBind tube.
- Remove and retain the eluate which contains the cDNA library in a clean 1.5 ml Eppendorf DNA LoBind tube
- Dispose of the pelleted beads
For each sample, analyse 1 µl of the amplified cDNA for size, quantity and quality using a Qubit fluorometer and Agilent Bioanalyzer (or equivalent) for a QC check.
重要
Sometimes a high-molecular weight product is visible in the wells of the gel when the PCR products are run, instead of the expected smear. These libraries are typically associated with poor sequencing performance. We have found that repeating the PCR with fewer cycles can remedy this.
Pool together equimolar samples of the amplified cDNA barcoded samples to a total of 15 – 25 fmols and make the volume up to 23 µl in Elution Buffer (EB).
Mass | Molarity if fragment length = 0.5 kb | Molarity if fragment length = 1.5 kb | Molarity if fragment length = 3 kb |
---|---|---|---|
5 ng | 16 fmol | 5 fmol | 3 fmol |
10 ng | 32 fmol | 11 fmol | 5 fmol |
15 ng | 49 fmol | 16 fmol | 8 fmol |
20 ng | 65 fmol | 22 fmol | 11 fmol |
25 ng | 81 fmol | 27 fmol | 13 fmol |
50 ng | 154 fmol | 51 fmol | 26 fmol |
If the quantity of amplified cDNA is above 25 fmol, the remaining cDNA can be frozen and stored for another sequencing experiment (in this case, library preparation would start from the Adapter Addition step). We recommend avoiding multiple freeze-thaw cycles to prevent DNA degradation.
The sequencing adapter used in Kit 11 chemistry has a higher capture rate, enabling lower flow cell loading amounts to give optimal pore occupancy.
提示
Library storage recommendations
We recommend storing libraries in Eppendorf DNA LoBind tubes at -20°C for short term storage or repeated use, for example, re-loading flow cells between washes. For single use and long term storage of more than 3 months, we recommend storing libraries at -80°C in Eppendorf DNA LoBind tubes.
6. Adapter addition
材料
- Rapid Adapter T (RAP T)
- Elution Buffer (EB)
- RAP Dilution Buffer (RDB) or Adapter Buffer (ADB)
耗材
- 1.5 ml Eppendorf DNA LoBind tubes
仪器
- 迷你离心机
- 盛有冰的冰桶
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P100 移液枪和枪头
- P20 移液枪和枪头
- P10 移液枪和枪头
- P2移液枪和枪头
重要
The Rapid Adapter T (RAP T) used in this kit and protocol is not interchangeable with other sequencing adapters.
This kit and protocol is only compatible with Rapid Adapter T (RAP T).
Rapid Adapter T (RAP T) is a new sequencing adapter for Kit 11 chemistry and is higher capture, enabling lower flow cell loading amounts and contains fuel fix technology, enabling users to run long experiments without the need for fuel addition during the run. Therefore, sequencing adapters from other kits and chemistries are not compatible with this kit or protocol.
Spin down the Rapid Adapter T (RAP T) and place on ice.
Thaw the RAP Dilution Buffer (RDB) or Adapter Buffer (ADB) at room temperature, spin down briefly using a microfuge and mix by pipetting before storing on ice.
In a fresh 1.5 ml Eppendorf DNA LoBind tube, dilute Rapid Adapter T (RAP T):
Reagent | Volume |
---|---|
Rapid Adapter T (RAP T) | 1.2 µl |
RAP Dilution Buffer (RDB) or Adapter Buffer (ADB) | 6.8 µl |
Total | 8 µl |
Mix well by pipetting and spin down.
Add 1 µl of the diluted Rapid Adapter T (RAP T) to the amplified cDNA library, making the final volume up 24 µl.
Mix well by pipetting and spin down.
Incubate the reaction for 5 minutes at room temperature.
步骤结束
The prepared library is used for loading onto the flow cell. Store the library on ice until ready to load.
提示
文库保存建议
若为 短期 保存或重复使用(例如在清洗芯片后再次上样),我们建议将文库置于Eppendorf LoBind 离心管中 4℃ 保存。 若为一次性使用且储存时长 __超过3个月__,我们建议将文库置于Eppendorf LoBind 离心管中 -80℃ 保存。
7. Priming and loading the flow cell
材料
- Flush Buffer (FB)
- Flush Tether (FLT)
- Loading Beads II (LBII)
- Sequencing Buffer II (SBII)
- Loading Solution (LS)
耗材
- PromethION 测序芯片
- 1.5 ml Eppendorf DNA LoBind 离心管
仪器
- PromethION 2 Solo 测序设备
- PromethION测序设备
- PromethION 测序芯片遮光片
- P1000 移液枪和枪头
- P200 移液枪和枪头
- P20 移液枪和枪头
Using the Loading Solution
We recommend using the Loading Beads II (LBII) for loading your library onto the flow cell for most sequencing experiments. However, if you have previously used water to load your library, you must use Loading Solution (LS) instead of water. Note: some customers have noticed that viscous libraries can be loaded more easily when not using Loading Beads II.
Thaw the Sequencing Buffer II (SBII), Loading Beads II (LBII) or Loading Solution (LS, if using), Flush Tether (FLT) and Flush Buffer (FB) at room temperature before mixing the reagents by vortexing, and spin down the SBII and FLT at room temperature.
To prepare the flow cell priming mix, add 30 µl of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing.
重要
将芯片从冰箱中取出后,请将其置于室温环境孵育20分钟再插入PromethION测序仪。潮湿环境下的测序芯片上可能会形成冷凝水。因此,请检查测序芯片顶部和底部的金色连接器引脚处是否有水凝结。如有,请使用无纤维布擦干。请确保测序芯片底部有热垫(黑色)覆盖。
对 PromethION 2 Solo,请按以下步骤为测序芯片上样:
将测序芯片平放在金属板上。
将测序芯片推入对接端口,直至金色引脚或绿色电路板不可见。
对PromethION 24/48,将测序芯片插入相应卡槽的对接端口:
将测序芯片与连接器横竖对齐,以便顺利卡入。
用力下压芯片至卡槽,并确认卡夹位置归位。
重要
如插入配置测试芯片的角度出现偏差,可能会损坏PromethION上的引脚并影响测序结果。如您发现 PromethION测序仪芯片位置上的引脚损坏,请通过电子邮件(support@nanoporetech.com)或微信公众号在线支持(NanoporeSupport)联系我们的技术支持团队。
顺时针滑动加液孔孔盖,将其打开。
重要
从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。
在加液孔打开的状态下,按下述步骤吸取少量液体,同时避免引入气泡:
- 将P1000移液枪转至200µl刻度。
- 将枪头垂直插入加液孔中。
- 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
使用P1000移液枪向芯片的加液孔中加入500 µl芯片预处理溶液。加入过程中,请避免引入气泡。等待5分钟,与此同时,您可按以下步骤准备上样文库。
Thoroughly mix the contents of the Loading Beads II (LBII) by pipetting.
重要
The Loading Beads II (LBII) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.
In a new tube, prepare the library for loading as follows:
Reagent | Volume per flow cell |
---|---|
Sequencing Buffer II (SBII) | 75 µl |
Loading Beads II (LBII) thoroughly mixed before use, or Loading Solution (LS), if using | 51 µl |
DNA library | 24 µl |
Total | 150 µl |
缓慢向芯片的加液口中加入500 µl预处理液,完成芯片的预处理。
临上样前,用移液枪轻轻吹打混匀制备好的文库。
Using a P1000, insert the pipette tip into the inlet port and add 150 µl of library.
合上加液孔孔盖。
重要
为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。
我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。
如遮光片不在测序芯片上,请您按照以下步骤安装:
- 将遮光片的中空部分(空槽)与测序芯片的加液孔孔盖对齐。确保遮光片的前沿位于测序芯片ID的上方。
- 用力下压遮光片的卡垫部分,遮光片空槽边缘会随卡垫卡入加液孔孔盖下方。
步骤结束
准备就绪后,合上PromethION设备上盖。
请在为PromethION芯片上样后,等待10分钟再启动实验,以提高芯片产出。
8. 数据采集和碱基识别
如何开始测序
在完成测序芯片的加样后,您即可在MinKNOW中启动测序实验。MinKNOW 软件负责仪器控制、数据采集以及实时碱基识别。有关设置和使用 MinKNOW 的详细信息,请参阅MinKNOW 实验指南。
您可以通过多种方式使用并设置MinKNOW:
- 在直接或远程连接到测序设备的计算机上。
- 直接在 GridION、MinION Mk1C 或 PromethION 24/48 测序设备上。
有关在测序设备上使用 MinKNOW 的更多信息,请参阅相应设备的用户手册:
在MinKNOW中启动测序:
1. 在 "开始 "(Start)页面上,选择 __开始测序__(Start Sequencing)。
2. 输入实验详情:例如实验名称,测序芯片位置及样本ID。
3. 在"试剂盒"页面上,选择建库试剂盒。
4. 配置测序实验参数,或保持“运行选项”和“分析”页面中的默认设置。
请注意: 如果在设置运行参数时关闭了碱基识别,您可在实验结束后,在MinKNOW中运行线下碱基识别。详情请参阅MinKNOW实验指南。
5. 在“输出”页面中,设置输出参数或保持默认设置。
6. 单击 "参数确认" 页面上的 开始 启动测序。
测序后数据分析
当于MinKNOW上完成测序后,您可按照“测序芯片的重复利用及回收”一节中的说明重复使用或返还测序芯片。
完成测序和碱基识别后,即可进行数据分析。有关碱基识别和后续分析选项的详细信息,请参阅数据分析文档。
在下游分析部分,我们将概述更多用于数据分析的选项。
9. 测序芯片的重复利用及回收
材料
- 测序芯片清洗剂盒(EXP-WSH004)
完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于+2至+8℃保存。
您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南。
提示
我们建议您在停止测序实验后尽快清洗测序芯片。如若无法实现,请将芯片留在测序设备上,于下一日清洗。
或者,请按照回收程序将测序芯片返还至Oxford Nanopore。
您可在此处找到回收测序芯片的说明。
重要
如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。
10. 下游分析
下游分析
您可以选择以下几个途径来进一步分析经过碱基识别的数据:
1. EPI2ME 工作流程
Oxford Nanopore Technologies通过EPI2ME提供了一系列针对高阶数据分析的生物信息学教程和工作流程。上述资源汇总于纳米孔社区的 EPI2ME 板块。该平台通过描述性文字、生物信息学代码和示例数据,具象化地展示出我们的研究和应用团队发布在 GitHub 上的工作流程。
2. 科研分析工具
Oxford Nanopore Technologies的研发部门开发了许多分析工具,您可在Oxford Nanopore的 GitHub 资料库中找到。这些工具面向有一定经验的用户,并包含如何安装和运行软件的说明。工具以源代码形式提供,因此我们仅提供有限的技术支持。
3. 纳米孔社区用户开发的分析工具
如上述资源未能提供满足您研究需求的数据分析方法,请前往资源中心,查找适用的生物信息学工具。该板块汇总了许多由纳米孔社区成员开发、且在Github上开源的、针对纳米孔数据的生信分析工具。请注意,Oxford Nanopore Technologies不为这些工具提供支持,也不能保证它们与测序所用的最新的化学试剂/软件配置兼容。
11. DNA/RNA提取和文库制备过程中可能出现的问题
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
低质量样本
现象 | 可能原因 | 措施及备注 |
---|---|---|
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) | 用户所使用的DNA提取方法未能达到所需纯度 | 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法。 请考虑将样品再次用磁珠纯化。 |
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。 |
RNA的片段长度短于预期 | RNA在提取过程中降解 | 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。 我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染. |
经AMPure磁珠纯化后的DNA回收率低
现象 | 可能原因 | 措施及备注 |
---|---|---|
低回收率 | AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 | 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。 2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。 |
低回收率 | DNA片段短于预期 | AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 |
末端修复后的DNA回收率低 | 清洗步骤所用乙醇的浓度低于70% | 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。 |
12. Issues during the sequencing run
以下表格列出了常见问题,以及可能的原因和解决方法。
我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。
如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。
Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 纳米孔阵列中引入了气泡 | 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。 |
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 测序芯片没有正确插入测序仪 | 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。 |
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 | 文库中残留的污染物对纳米孔造成损害或堵塞 | 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。 如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法 。 |
MinKNOW脚本失败
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示 "Script failed”(脚本失败) | 重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。 |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
读长短于预期
现象 | 可能原因 | 措施及备注 |
---|---|---|
读长短于预期 | DNA样本降解 | 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。 1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。 2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。 在上图中,样本1为高分子量DNA,而样本2为降解样本。 3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。 |
大量纳米孔处于不可用状态
现象 | 可能原因 | Comments and actions |
---|---|---|
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示) 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。 | 样本中含有污染物 | 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加: 1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或 2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。 |
大量纳米孔处于失活状态
现象 | 可能原因 | 措施及备注 |
---|---|---|
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) | 测序芯片中引入了气泡 | 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。 |
大量纳米孔处于失活/不可用状态 | 文库中存在与DNA共纯化的化合物 | 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。 1. 请参考 植物叶片DNA提取方法。 2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。 3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。 |
大量纳米孔处于失活/不可用状态 | 样本中含有污染物 | 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。 |
运行过程中过孔速度和数据质量(Q值)降低
现象 | 可能原因 | 措施及备注 |
---|---|---|
运行过程中过孔速度和数据质量(Q值)降低 | 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 | 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。 |
温度波动
现象 | 可能原因 | 措施及备注 |
---|---|---|
温度波动 | 测序芯片和仪器接触不良 | 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。 |
未能达到目标温度
现象 | 可能原因 | 措施及备注 |
---|---|---|
MinKNOW显示“未能达到目标温度” | 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) | MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION温度控制的更多信息,请参考此 FAQ (常见问题)文档。 |
Guppy – no input .fast5 was found or basecalled
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Guppy – no Pass or Fail folders were generated after basecalling
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Guppy – unusually slow processing on a GPU computer
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |