Library recovery from flow cells

概览

  • This protocol is for recovering DNA libraries from flow cells for continued sequencing
  • Compatible with both MinION and PromethION flow cells, and all DNA sequencing kits

For Research Use Only

Document version: LIR_9178_v1_revK_13Dec2024

1. Overview of the protocol

Introduction to the protocol

This protocol outlines three methods for recovering a library for either transfer to a new flow cell or to wash the original flow cell for further sequencing of the recovered library. We recommend using these protocols to maximise sequencing output per sample or to provide additional support where a flow cell has failed mid-run.

A DNA library generated using any of our sequencing kits can be recovered and transferred for both MinION and PromethION Flow Cells. We recommend that a library can be recovered up to 2-3 times for successful sequencing on either a washed or a new flow cell.

Steps in the workflow:

Prepare for your experiment

You will need to:

  • If using a new flow cell, check to ensure it has enough pores for a good sequencing run
  • Ensure you have enough flow cell priming reagents, the correct equipment and third-party reagents

Method 1 Transfer a library between flow cells

You will need to:

  • Stop sequencing on MinKNOW
  • Prime the second flow cell
  • Recover the library from the original flow cell
  • Transfer to the new flow cell within two hours
  • Start a new sequencing run on MinKNOW

Method1

Method 2 Clean up and transfer a library between flow cells

You will need to:

  • Stop sequencing on MinKNOW
  • Recover the library from the original flow cell
  • SPRI clean the recovered library
  • Store the library
  • Prime the second flow cell
  • Transfer to the new flow cell
  • Start a new sequencing run on MinKNOW

Method2

Method 3 Recover a library to replace on a washed flow cell

You will need to:

  • Pause sequencing on MinKNOW
  • Recover the library from the original flow cell
  • Flush the flow cell with flow cell Wash Mix
  • Reprime the washed flow cell
  • Reload the library onto the washed flow cell
  • Resume the sequencing run on MinKNOW

Method3

Use cases for each method

Method 1: Transfer a library between flow cells

  • For users wanting to continue generating data from the same library after a sequencing run has completed.
  • If a flow cell has failed within a few hours of sequencing, the library can be recovered and loaded onto a new flow cell to continue sequencing.

Method 2: Clean up and transfer a library between flow cells
  • For users wanting to continue generating data from the same library at a later date after a sequencing run has completed or if a second flow cell is not immediately available for transfer.
  • If the flow cell was not prepared with the compatible flow cell reagents for the library chemistry, the library can be cleaned up and transferred to a flow cell primed with the correct buffers.
    • For example, if a Kit 14 DNA library is loaded onto an R10.4.1 flow cell primed with Kit 9 flow cell priming reagents, the DNA library should be recovered, SPRI cleaned and loaded onto a flow cell primed with Kit 14 compatible reagents.
  • If a flow cell has failed within a few hours of sequencing, the library can be recovered and loaded onto a new flow cell to continue sequencing at a later date.

Method 3: Recover a library to replace on a washed flow cell
  • For users wanting to continue generating data from the same library on the same flow cell.
  • In cases where channels are mostly in the unavailable state and there is limited library, the flow cell can be washed to remove the blocks and reloaded with the same library.

Recommendations

  • We recommend a library can be transferred a maximum of 2-3 times as with each recovery, a small amount of library is lost which may impact sequencing output and pore occupancy.

  • Highly viscous libraries, typically generated using the Ultra-Long DNA Sequencing Kit V14 (SQK-ULK114) are difficult to recover from the flow cell, leading to variable results. We recommend only transferring between PromethION flow cells, if required.

  • For the "Transfer a library between flow cells" method, we recommend transferring your library between flow cells immediately. Long term storage is not recommended following this method. The library can remain on the original flow cell in the device or stored in an Eppendorf DNA LoBind tube on ice for up to two hours, if required.

  • Longer term storage of a cleaned up library is only recommended when following the "Clean up and transfer a library between flow cells" method. The library can be stored at 4°C for short term storage or repeated use, for example, re-loading flow cells between washes.

  • We recommend avoiding transferring short fragment libraries (<2 kb) where possible as they are less efficiently transferred between flow cells which may negatively affect sequencing results.

重要

Compatibility of this protocol

This protocol is compatible with the following:

  • All DNA sequencing kits
  • All Flow Cell Priming Kit expansions
  • All Sequencing Auxiliary Vials expansions
  • SFB Expansion (EXP-SFB001)
  • Flow Cell Wash Kit (EXP-WSH004 and EXP-WSH004-XL)
  • R9.4.1 and R10.4.1 flow cells (FLO-MIN106 and FLO-MIN114)

2. Equipment and consumables

材料
  • Flow Cell Priming Kit (EXP-FLP004)
  • Sequencing Auxiliary Vials V14 (EXP-AUX003)
  • Flow Cell Wash Kit (EXP-WSH004) or Flow Cell Wash Kit XL (EXP-WSH004-XL)
  • SFB Expansion (EXP-SFB001)

耗材
  • MinION Flow Cell (FLO-MIN114)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
  • 1.5 ml Eppendorf DNA LoBind tubes
  • Agencourt AMPure XP beads (Beckman Coulter, A63881)
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)

仪器
  • MinION 或 GridION 测序仪
  • P1000移液枪和枪头
  • P200 移液枪和枪头
  • P20 移液枪和枪头
  • 盛有冰的冰桶
  • 涡旋混匀仪
  • Hula混匀仪(低速旋转式混匀仪)
  • Microfuge
  • 磁力架
  • Heating block
  • Qubit荧光计 (或用于质控检测的等效仪器)

Check your MinION flow cell

We highly recommend that you check the number of pores in your flow cell prior to starting a sequencing experiment. This should be done within 12 weeks of purchasing for MinION flow cells. Oxford Nanopore Technologies will replace any flow cell with fewer than 800 pores when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.

重要

We recommend having the suitable DNA sequencing kit protocol available when completing this procedure to ensure the correct flow cell priming reagents and volumes are used.

Flow cell priming reagents

Ensure the compatible flow cell priming reagents are used for your libraries. These are required for all methods and are available with our sequencing kits. If extra reagents are required, they can be found in the following expansion kits.

For libraries prepared using Kit 14 chemistry, please ensure you are using the following reagents:

  • Flow Cell Tether (FCT)
  • Flow Cell Flush (FCF)
  • For MinION flow cells only, we recommend using Bovine Serum Albumin (BSA)

Flow Cell Priming Kit (EXP-FLP004) contents: EXP-FLP004v2

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Flow Cell Flush FCF 6 Clear cap, light blue lable 8,000
Flow Cell Tether FCT 1 Purple 200

For libraries prepared using Kit 9, 10 or 11 chemistry, please ensure you are using the following reagents:

  • Flush Buffer (FB)
  • Flush Tether (FLT)

Flow Cell Priming Kit (EXP-FLP002) contents: FLP

Name Acronym Cap colour No. of vial Fill volume per vial (μl)
Flush Buffer FB Blue 6 1,170
Flush Tether FLT Purple 1 200

Short Fragment Buffer (SFB) and Elution Buffer (EB)

Short Fragment Buffer (SFB) and Elution Buffer (EB) are both required for the "Clean up and transfer a library between flow cells" method. Both reagents are found in our sequencing kits but extra reagents can be found in the below kits.

Short Fragment Buffer (SFB) is available in the SFB Expansion (EXP-SFB001).

SFB Expansion (EXP-SFB001) contents:

2020 03 25 SFB expansion v1 DS

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Short Fragment Buffer SFB Grey 4 1,800

Elution Buffer (EB) is available in the Sequencing Auxiliary Kit.

For libraries prepared using Kit 14 chemistry, please ensure you are using the following kit which also includes the flow cell priming reagents:

Sequencing Auxiliary Vials V14 (EXP-AUX003) contents:

EXP-AUX003 bottles

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Elution Buffer EB Black 2 500
Sequencing Buffer SB Red 2 700
Library Solution LIS White cap, pink label 2 600
Library Beads LIB Pink 2 600
Flow Cell Flush FCF Light blue label 2 8,000
Flow Cell Tether FCT Purple 2 200

For libraries prepared using the Kit 10 or 11 chemistry, please use the following kit:

Sequencing Auxiliary Vials (EXP-AUX002) contents:

EXP-AUX110 kit contents

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Sequencing Buffer SBII Red 4 500
Loading Solution LS Pink sticker on cap 2 360
Elution Buffer EB Black 2 200
Loading Beads LBII Pink 2 360

For libraries prepared using Kit 9 chemistry, please use the following kit:

Sequencing Auxiliary Vials (EXP-AUX001) contents:

EXP AUX001 v1 DS

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Sequencing Buffer SQB Red 6 300
Elution Buffer EB Black 2 200
Loading Beads LB Pink 2 360

AMPure XP Beads (AXP)

For the "Clean up and transfer a library between flow cells" method, AMPure XP Beads (AXP) are required. These are available in many of our kits where the DNA library undergoes a clean up step. However, if extra beads are required, we recommend purchasing more from Beckman Coulter, Inc. (A63880).

Flow Cell Wash Kit

The Flow Cell Wash Kit is required for the "Recover a library to replace on a washed flow cell" method.

Flow Cell Wash Kit contents (EXP-WSH004): EXP-WSH004 kit contents v2

Contents Volume (µl) No. of tubes No. of uses
Wash Mix (WMX) 15 1 6
Wash Diluent (DIL) 1,300 2 6
Storage Buffer (S) 1,600 2 6

3. Transfer a library between MinION flow cells

材料
  • For Kit 14 libraries, Flow Cell Flush (FCF) and Flow Cell Tether (FCT)
  • For Kit 9, 10 and 11 libraries, Flush Buffer (FB) and Flush Tether (FLT)

耗材
  • MinION Flow Cell (FLO-MIN114)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)

仪器
  • MinION 或 GridION 测序仪
  • MinION 及GridION 测序芯片遮光片
  • P1000移液枪和枪头
  • P200 移液枪和枪头

Preparation to transfer a library to a second flow cell

  • This protocol assumes that the original flow cell has been loaded with a DNA library prepared in accordance with the suitable protocol.
  • The aim is to prepare the second flow cell and recover the library from the original flow cell for immediate transfer.
  • Data acquisition in MinKNOW should be stopped during the recovery and transfer procedure.
  • After the second flow cell has been primed, the library can be recovered and immediately transferred to the second flow cell.
重要

We recommend keeping the light shield on the original flow cell when recovering the library.

The light shield should be installed on the second flow cell as soon as the library has been loaded for optimal sequencing output.

Stop the sequencing run for the original flow cell on MinKNOW by clicking 'Stop'.

Min 2

Thaw and prepare the flow cell priming mix according to the "Priming and loading the SpotON flow cell" section of the suitable protocol.

Open the MinION or GridION device lid and slide the second flow cell under the clip. Press down firmly on the priming port cover to ensure correct thermal and electrical contact.

Note: We recommend leaving the original flow cell in the device and inserting the second flow cell in a free position, where possible. If a free position is not available on the device:

  1. Remove the original flow cell and place in the tray the flow cell was delivered in. Ensure the flow cell remains as level as possible to prevent waste fluid leaking out of the waste port.
  2. Insert the second flow cell in the device for priming.
  3. Library recovery can be completed from the original flow cell in the plastic tray.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

To prime the second flow cell, slide the priming port cover clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入预处理孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
    __请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。

中文-测序芯片预处理上样3

Load 800 µl of the priming mix into the second flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

Complete the flow cell priming for the second flow cell:

  1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
  2. Load 200 µl of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the introduction of air bubbles.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5

To prepare the original flow cell for library recovery, slide open the priming port cover and lift open the SpotON sample port cover.

transfer between min fc

Set a pipette to 75 µl and fully depress the pipette before inserting the tip into the SpotON port of the original flow cell. Slowly aspirate to recover the DNA library from the flow cell.

Note: Insert the pipette tip to the point where it is touching the liquid in the flow cell. Do not insert the tip too far into the port as this will impact removal.

The recovered library may appear slightly yellow and not all the library loading beads (LB, LBII, LIB) will be fully recovered but this will not impact library recovery and transfer.

Add the recovered DNA library to the second flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

transfer between min fc1

Gently replace the SpotON sample port cover of the second flow cell, making sure the bung enters the SpotON port and close the priming port.

Flow Cell Loading Diagrams Step 8

Flow Cell Loading Diagrams Step 9

重要

为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。

我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。

按下述步骤安装测序芯片遮光片:

  1. 小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。

  2. 将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。

MinION加装遮光片

注意

MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。

Start a new sequencing run on MinKNOW for the second flow cell.

步骤结束

Using the suitable protocol for your DNA library, continue with the "Sequencing and data analysis" section to complete the experiment.

The original flow cell can be returned to Oxford Nanopore for recycling if no longer required.

Instructions for returning flow cells can be found here.

4. Clean up and transfer a library between MinION Flow Cells

材料
  • For Kit 14 libraries, Flow Cell Flush (FCF), Flow Cell Tether (FCT), Library Solution (LIS), Library Beads (LIB), and Sequencing Beads (SB)
  • For Kit 9, 10 and 11 libraries, Flush Buffer (FB), Flush Tether (FLT) Loading Beads/II (LB/LBII), Loading Solution (LS), and Sequencing Buffer/II (SQB/SBII),
  • AMPure XP 磁珠(AXP)
  • Elution Buffer (EB)
  • Short Fragment Buffer (SFB)

耗材
  • MinION Flow Cell (FLO-MIN114)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)

仪器
  • MinION 或 GridION 测序仪
  • MinION 及GridION 测序芯片遮光片
  • P1000移液枪和枪头
  • P200 移液枪和枪头
  • 涡旋混匀仪
  • Hula混匀仪(低速旋转式混匀仪)
  • Microfuge
  • 磁力架
  • Heating block
  • Qubit荧光计 (或用于质控检测的等效仪器)

Preparation to clean up a library before transfer to a second flow cell

  • The aim is to recover and clean up your library before priming the second flow cell for loading the recovered library at a later date.
  • The cleaned up library can be stored at 4°C for short term storage or repeated use, for example, re-loading flow cells between washes.
  • Data acquisition in MinKNOW should be stopped during the recovery and transfer procedure.
重要

We recommend keeping the light shield on the original flow cell when recovering the library.

The light shield should be installed on the second flow cell as soon as the library has been loaded for optimal sequencing output.

Thaw the kit components at room temperature and prepare as indicated by the table below:

Reagent 1. Thaw at room temperature 2. Mix well by vortexing 3. Briefly spin down 4. Keep on ice
AMPure XP Beads (AXP) X X Keep at room temperature
Short Fragment Buffer (SFB)
Elution Buffer (EB)

AMPure XP Beads from an Oxford Nanopore sequencing kit require thawing as they are stored with the kit at -20°C.

Stop the sequencing run for the original flow cell on MinKNOW by clicking 'Stop'.

Min 2

To prepare the original flow cell for library recovery, slide open the priming port cover and lift open the SpotON sample port cover.

transfer between min fc

Set a pipette to 75 µl and fully depress the pipette before inserting the tip into the SpotON port of the original flow cell. Slowly aspirate to recover the DNA library from the flow cell.

Note: Insert the pipette tip to the point where it is touching the liquid in the flow cell. Do not insert the tip too far into the port as this will impact removal.

The recovered library may appear slightly yellow and not all the library loading beads (LB, LBII, LIB) will be fully recovered but this will not impact library recovery and transfer.

Transfer the recovered library to a fresh 1.5 ml Eppendorf DNA LoBind tube and store on ice.

The original flow cell can be removed from the MinION or GridION device by sliding the flow cell from under the clip.

The original flow cell can be returned to Oxford Nanopore for recycling if no longer required.

Instructions for returning flow cells can be found here.

Resuspend the AMPure XP Beads (AXP) by vortexing.

Add 300 µl of resuspended AMPure XP Beads (AXP) to the recovered library and mix by flicking.

Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.

将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去清液。

Wash the beads by adding 150 µl of Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.

将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的清液。

Remove the tube from the magnetic rack and resuspend the pellet in 13 µl of Elution Buffer (EB).

Spin down and incubate for 10 minutes at room temperature. For high molecular weight DNA, incubating at 37°C can improve recovery of long fragments.

将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。

Remove and retain 13 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

CHECKPOINT

Quantify 1 µl of eluted sample using a Qubit fluorometer. If the recovered library is below the detection level of the Qubit dsDNA HS Assay, we do not recommend continuing to load the flow cell.

Note: Library concentration of a recovered library will not be as high as the initial library, but the best results will be achieved by loading as close to the requirements as possible.

The library can be stored at 4°C.

Thaw and prepare the flow cell priming mix according to the "Priming and loading the SpotON flow cell" section of the suitable protocol.

Open the MinION or GridION device lid and slide the second flow cell under the clip. Press down firmly on the priming port cover to ensure correct thermal and electrical contact.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

To prime the second flow cell, slide the priming port cover clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入预处理孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
    __请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。

中文-测序芯片预处理上样3

Load 800 µl of the priming mix into the second flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

Thoroughly mix the contents of the Library Beads/Loading Beads by pipetting.

重要

The Library Beads/Loading Beads tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the recovered library for loading according to the "Priming and loading the SpotON flow cell" section of the suitable protocol to ensure you are using the correct reagents and volumes.

For Kit 14 chemistry:

Reagent Volume per flow cell
Sequencing Buffer (SB) 37.5 µl
Library Beads (LIB) mixed immediately before use, or Library Solution (LIS), if using 25.5 µl
Recovered DNA library 12 µl
Total 75 µl

Complete the flow cell priming for the second flow cell:

  1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
  2. Load 200 µl of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the introduction of air bubbles.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5

临上样前,用移液枪轻轻吹打混匀制备好的文库。

Add the recovered DNA library to the second flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

transfer between min fc1

Gently replace the SpotON sample port cover of the second flow cell, making sure the bung enters the SpotON port and close the priming port.

Flow Cell Loading Diagrams Step 8

Flow Cell Loading Diagrams Step 9

重要

为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。

我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。

按下述步骤安装测序芯片遮光片:

  1. 小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。

  2. 将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。

MinION加装遮光片

注意

MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。

Start a new sequencing run on MinKNOW for the second flow cell.

步骤结束

Using the suitable protocol for your DNA library, continue with the "Sequencing and data analysis" section to complete the experiment.

5. Recover a library to replace on a washed MinION flow cell

材料
  • For Kit 14 libraries, Flow Cell Flush (FCF) and Flow Cell Tether (FCT)
  • For Kit 9, 10 and 11 libraries, Flush Buffer (FB) and Flush Tether (FLT)
  • 测序芯片清洗剂盒(EXP-WSH004)

耗材
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
  • 1.5 ml Eppendorf DNA LoBind 离心管

仪器
  • MinION 或 GridION 测序仪
  • P1000 pipette and tips
  • P200 移液枪和枪头
  • 涡旋混匀仪
  • 迷你离心机
  • 盛有冰的冰桶

Preparation to recover and wash a library to replace on the same flow cell

  • This protocol assumes that the original flow cell has been loaded with a DNA library prepared in accordance with the suitable protocol.
  • The aim is to recover the library and wash the flow cell to reload the recovered library.
  • Data acquisition in MinKNOW can be paused during the procedure.
重要

We recommend keeping the light shield on the flow cell during library recovery, washing and reloading for optimal sequencing output.

Pause the sequencing run for the original flow cell on MinKNOW by clicking 'Pause'.

Screenshot 2023-01-23 115409

Place the tube of Wash Mix (WMX) on ice. Do not vortex the tube.

Thaw one tube of Wash Diluent (DIL) at room temperature and mix the contents of Wash Diluent (DIL) thoroughly by vortexing. Then spin down briefly and place on ice.

To prepare the original flow cell for library recovery, slide open the priming port cover.

Flow Cell Loading Diagrams Step 2 (3)

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

重要

Be aware that the library is removed from the priming port as a larger volume and expect to see the fluid in the waste channel to move back.

Set a pipette to 150 µl and fully depress the pipette before inserting the tip into the priming port of the original flow cell. Slowly aspirate to recover the DNA library from the flow cell.

Note: The recovered library may appear slightly yellow and not all the library loading beads (LB, LBII, LIB) will be fully recovered but this will not impact library recovery and transfer.

recovering library step 6

Transfer the recovered library to a fresh 1.5 ml Eppendorf DNA LoBind tube and store on ice.

In a fresh 1.5 ml Eppendorf DNA LoBind tube, prepare the following Flow Cell Wash Mix:

Reagent Volume per flow cell
Wash Mix (WMX) 2 μl
Wash Diluent (DIL) 398 μl
Total 400 μl

Mix well by pipetting, and place on ice. Do not vortex the tube.

重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Close the priming port and SpotON sample port cover, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Rotate the flow cell priming port cover clockwise so that the priming port is visible.

Flow Cell Loading Diagrams Step 2 (3)

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

Slowly load 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.
  4. Set a timer for a 5 minute incubation.

Loading wash mix 200ul slow min grid

Once the 5 minute incubation is complete, carefully load the remaining 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take the remaining 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.

Loading wash mix 200ul slow min grid

Close the priming port and wait for 1 hour.

Flow Cell Loading Diagrams Step 9

重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Close the priming port and SpotON sample port cover, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Thaw and prepare the flow cell priming mix according to the "Priming and loading the SpotON flow cell" section of the suitable protocol.

顺时针转动预处理孔孔盖,使预处理孔显露出来。

中文-测序芯片预处理上样2

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入预处理孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
    __请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。

中文-测序芯片预处理上样3

Load 800 µl of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

Complete the flow cell priming:

  1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
  2. Load 200 µl of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the introduction of air bubbles.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5

Bring the recovered library up to room temperature and load 150 µl to the flow cell via the SpotON port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

Picture4

轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。

中文-测序芯片预处理上样8

中文-测序芯片预处理上样9

重要

If the light shield was removed during the washing step, the light shield should be replaced on the flow cell as soon as library is loaded for optimal sequencing output.

按下述步骤安装测序芯片遮光片:

  1. 小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。

  2. 将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。

MinION加装遮光片

注意

MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。

Restart the sequencing run on MinKNOW.

步骤结束

Using the suitable protocol for your DNA library, continue with the "Sequencing and data analysis" section to complete the experiment.

Used flow cells that are no longer required can be returned to Oxford Nanopore for recycling.

Instructions for returning flow cells can be found here.

6. DNA/RNA提取和文库制备过程中可能出现的问题

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

低质量样本

现象 可能原因 措施及备注
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) 用户所使用的DNA提取方法未能达到所需纯度 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

请考虑将样品再次用磁珠纯化。
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) RNA在提取过程中降解 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。
RNA的片段长度短于预期 RNA在提取过程中降解 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。

我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染.

经AMPure磁珠纯化后的DNA回收率低

现象 可能原因 措施及备注
低回收率 AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。

2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。
低回收率 DNA片段短于预期 AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 SPRI cleanup
末端修复后的DNA回收率低 清洗步骤所用乙醇的浓度低于70% 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。

7. 测序过程中可能出现的问题

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数

现象 可能原因 措施及备注
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 纳米孔阵列中引入了气泡 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 测序芯片没有正确插入测序仪 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 文库中残留的污染物对纳米孔造成损害或堵塞 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。

如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

MinKNOW脚本失败

现象 可能原因 措施及备注
MinKNOW显示 "Script failed”(脚本失败)
重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。

纳米孔利用率低于40%

现象 可能原因 措施及备注
纳米孔利用率<40% 测序芯片中的文库量不足 请确保您按照相应实验指南,向测序芯片中加入正确浓度和体积的测序文库。请在上样前对文库进行定量,并使用 Promega Biomath Calculator 等工具中的“ dsDNA:µg to pmol”功能来计算DNA分子的摩尔量。
纳米孔利用率接近0 使用连接测序试剂盒,但接头并未与DNA成功连接 请确保您在“测序接头连接”步骤中使用的是NEBNext快速连接模块(E6056),以及SQK-LSK114试剂盒中的连接缓冲液(LNB)。同时,请确保每种试剂的用量正确。您可通过制备Lambda对照文库来检验第三方试剂的可用性。
纳米孔利用率接近0 使用连接测序试剂盒;但在接头连接后的纯化步骤中并未使用LFB 或SFB洗涤,而是使用了酒精 酒精可导致测序接头上的马达蛋白变性。请确保在测序接头连接后使用LFB或SFB。
纳米孔利用率接近0 测序芯片中无系绳 系绳是随着预处理液加至芯片的(试剂盒9、10和11系列对应冲洗系绳FLT;试剂盒14系列对应测序芯片系绳FCT)。请确保您在制备预处理液时,按需将FLT或FCT加入冲洗缓冲液(对应试剂盒9、10和11系列)或测序芯片冲洗液(对应试剂盒14系列)中。

读长短于预期

现象 可能原因 措施及备注
读长短于预期 DNA样本降解 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。

1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。

2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。DNA gel2 在上图中,样本1为高分子量DNA,而样本2为降解样本。

3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。

大量纳米孔处于不可用状态

现象 可能原因 Comments and actions
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示)

image2022-3-25 10-43-25 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。
样本中含有污染物 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加:

1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或
2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。

大量纳米孔处于失活状态

现象 可能原因 措施及备注
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) 测序芯片中引入了气泡 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。
大量纳米孔处于失活/不可用状态 文库中存在与DNA共纯化的化合物 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。

1. 请参考 植物叶片DNA提取方法
2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。
3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。
大量纳米孔处于失活/不可用状态 样本中含有污染物 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。

温度波动

现象 可能原因 措施及备注
温度波动 测序芯片和仪器接触不良 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。

未能达到目标温度

现象 可能原因 措施及备注
MinKNOW显示“未能达到目标温度” 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION温度控制的更多信息,请参考此 FAQ (常见问题)文档。

Last updated: 12/13/2024

Document options

MinION