Products
Applications
Store Resources Support About
Support

Karen Miga

Telomere-to-telomere assembly of a complete human X chromosome

About Karen Miga

Karen H. Miga, PhD, is an Assistant Research Scientist at UCSC. Dr. Miga’s research program combines innovative computational and experimental approaches to produce the high-resolution sequence maps of human centromeric and pericentromeric DNAs.  

Abstract

Release of the first human genome assembly was a landmark achievement, and after nearly two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no one chromosome has yet been finished end to end, and hundreds of gaps persist across the genome. These unresolved regions include segmental duplications, ribosomal rRNA gene arrays, and satellite arrays that harbor unexplored variation of unknown consequence. We aim to finish these remaining regions and generate the first truly complete assembly of a human genome.

Here we announce a whole-genome de novo assembly that surpasses the continuity of GRCh38, along with the first complete, telomere-to-telomere assembly of a human X chromosome. In total, we collected 40X coverage of ultra-long Oxford Nanopore sequencing for the CHM13hTERT cell line, including 44 Gb of sequence in reads >100 kb and a maximum read length exceeding 1 Mb. This unprecedented coverage of ultra-long reads enabled the resolution of most repeats in the genome, including large fractions of the centromeric satellite arrays and short arms of the acrocentrics. A de novo assembly combining this nanopore data with 70X of existing PacBio data achieved an NG50 contig size of 75 Mb (compared to 56 Mb for GRCh38), with some chromosomes broken only at the centromere. Using this assembly as a basis, we chose to manually finish the X chromosome. The few unresolved segmental duplications were assembled using ultra-long reads spanning the individual copies, and the ~2.3 Mbp X centromere was assembled by identifying unique variants within the array and using these to anchor overlapping ultra-long reads. These results demonstrate that it is now possible to finish entire human chromosomes without gaps, and our future work will focus on completing and validating the remainder of the genome.

Register here for this year's London Calling.

Karen Miga

Karen Miga

Back