Products & Services


Nanopore sequencing offers advantages in all areas of research. Our offering includes DNA sequencing, as well as RNA and gene expression analysis and future technology for analysing proteins.

Learn about applications
View all Applications
News Explore

Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells Without Mitochondrial DNA


Date: 8th January 2015 | Source: Cell Metabolism

Authors: An S. Tan, James W. Baty, Lan-Feng Dong, Ayenachew Bezawork-Geleta, Berwini Endaya, Jacob Goodwin, Martina Bajzikova, Jaromira Kovarova, Martin Peterka, Bing Yan, Elham Alizadeh Pesdar, Margarita Sobol, Anatolyj Filimonenko, Shani Stuart, Magdalena Vondrusova, Katarina Kluckova, Karishma Sachaphibulkij, Jakub Rohlena, Pavel Hozak, Jaroslav Truksa, David Eccles, Larisa Haupt, Lyn Griffiths, Jiri Neuzil, Michael V. Berridge.

We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.

Read the full text

Recommended for you

Open a chat to talk to our sales team