Ligation sequencing gDNA V14 - Adeno-associated virus sequencing (SQK-NBD114.24)

概览

Sequencing of adeno-associated virus (AAV) vectors.

  • Requires the Native Barcoding Kit 24 V14 (SQK-NBD114.24)
  • Includes no PCR steps
  • Uses up to 24 barcodes
  • Allows analysis of native DNA
  • Compatible with R10.4.1 flow cells

For Research Use Only

This is an Early Access product. For more information about our Early Access programmes, please see this article on product release phases.

Document version: AAV_9194_v114_revC_20Sep2023

1. Overview of the protocol

重要

本试剂盒为早期试用产品

如需有关早期试用计划的更多信息,请参阅 本文了解产品的不同发布阶段。

请确保您始终使用最新版本的实验指南。

Introduction to the adeno-associated virus sequencing protocol

This end-to-end protocol describes how to extract recombinant adeno-associated virus (rAAV) vectors using the PureLink™ Viral RNA/DNA Mini extraction kit before sequencing using the Native Barcoding Sequencing Kit 24 V14 (SQK-NBD114.24). We have also included an optional annealing step post-extraction, however, we have found higher amounts of full-length inverted terminal repeat (ITR) sequences when the annealing step has been skipped before library preparation. Flushing steps have also been included as we recommend washing the flow cell to restore pores and to load a fresh library to continue sequencing.

The Know-How document is available for further details about the protocol optimisations and best practices.

Note: This protocol is currently validated to barcode up to six AAV samples for sequencing on a single flow cell.

Sequencing of the rAAV vectors enables the validation of vectors to ensure the transgene and promoter of interest are present, as well as identifying truncated rAAV genomes and any contamination. Validation is crucial in gene therapy to ensure the correct rAAV genomes are packaged into cells before therapeutic use.

Steps in the sequencing workflow:

Prepare for your experiment You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents.
  • Download the software for acquiring and analysing your data.
  • Check your flow cell to ensure it has enough pores for a good sequencing run.

Experiment workflow

Protocol step Process Time Stop option
DNAseI treatment Perform DNAseI treatment of the rAAV lysates to remove any non-encapsidated DNA from the rAAV preparations 35 minutes -
DNA extraction from rAAV Extract the rAAV vectors using the PureLink™ Viral RNA/DNA Mini Kit 45 minutes –80°C for long-term storage
Annealing (Optional) Self-anneal any remaining (+) and (-) single strands of rAAV vector 80 minutes -
End-prep Prepare the DNA ends for adapter attachment 20 minutes 4°C overnight
Native barcode ligation Ligate the native barcodes to the DNA ends 60 minutes 4°C overnight
Adapter ligation and clean-up Ligate sequencing adapters to the DNA ends 50 minutes 4°C for short-term storage or for repeated use, such as for reloading your flow cell
–80°C for long-term storage
Priming and loading the flow cell Prime the flow cell, and load your DNA library into the flow cell 5 minutes

AAV workflow updated v4

Sequencing

You will need to:

  • Start a sequencing run using the MinKNOW software which will collect raw data from the device and basecall reads in real-time. The reads will also be demultiplexed in MinKNOW.
  • Start the EPI2ME software and use the wf-aav-qc workflow for analysis.
重要

Compatibility of this protocol

This protocol should only be used in combination with:

  • Native Barcoding Kit 24 V14 (SQK-NBD114.24)
  • Native Barcoding Kit 96 V14 (SQK-NBD114.96)
  • R10.4.1 flow cells (FLO-MIN114)
  • Flow Cell Wash Kit (EXP-WSH004)
  • Sequencing Auxiliary Vials V14 (EXP-AUX003)
  • Native Barcoding Expansion V14 (EXP-NBA114)
  • MinION Mk1C device - MinION Mk1C IT requirements document
  • MinION Mk1B device - MinION IT requirements document

2. Equipment and consumables

材料
  • 2.6 x10^10 GC of rAAV per sample
  • 免扩增条形码测序试剂盒-24 V14(SQK-NBD114.24)

耗材
  • MinION及GridION测序芯片
  • PureLink™ Viral RNA/DNA Mini Kit (Thermo Fisher, 12280050)
  • Qubit™ ssDNA Assay Kit (ThermoFisher, Q10212)
  • Qubit 1x dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q33230)
  • NEBNext Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
  • NEBNext 快速连接模块(NEB,E6056)
  • NEB Blunt/TA 连接酶预混液(NEB,M0367)
  • DNase I (NEB, M0303)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)
  • 50X annealing buffer (2.5 M NaCl, 500 mM Tris-HCl, pH 7.5)
  • Ethanol, 100% (e.g. Fisher, 16606002)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • 2 ml Eppendorf DNA LoBind 离心管
  • Qubit™ 分析管(Invitrogen, Q32856)

仪器
  • MinION 或 GridION 测序仪
  • MinION 及GridION 测序芯片遮光片
  • Hula混匀仪(低速旋转式混匀仪)
  • 微孔板离心机,如Fisherbrand™ 微孔板迷你离心机(Fisher Scientific, 11766427)
  • 迷你离心机
  • 磁力架
  • 涡旋混匀仪
  • 热循环仪
  • 多通道移液枪和枪头
  • Qubit荧光计(或用于质控检测的等效仪器)
  • Eppendorf 5424 离心机(或等效器材)
  • 计时器
  • P1000 移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
  • P2移液枪和枪头
  • 盛有冰的冰桶
可选仪器
  • Nanodrop 分光光度计

This protocol requires 2.6 x10^10 GC of recombinant adeno-associate virus (rAAV) per sample.

A minimum of 2.6 x10^10 GC of rAAV per sample has been trialled across six barcodes.

We recommend estimating genome copy number per ml (GC/ml) and to standardise rAAV inputs prior to DNAseI treatment. Droplet digital PCR (ddPCR) or qPCR are commonly used to quantify AAV vector genome numbers in titres.

第三方试剂

Oxford Nanopore Technologies推荐您使用本实验指南中提及的所有第三方试剂,并已对其加以验证。我们尚未对其它替代试剂进行测试。

我们建议您按制造商说明准备待用的第三方试剂.

测序芯片质检

我们强烈建议您在开始测序实验前,对测序芯片的活性纳米孔数进行质检。质检需在您收到MinION /GridION /PremethION测序芯片三个月之内进行,或者在您收到Flongle测序芯片四周内进行。Oxford Nanopore Technologies会对活性孔数量少于以下标准的芯片进行替换** :

测序芯片 芯片上的活性孔数确保不少于
Flongle 测序芯片 50
MinION/GridION 测序芯片 800
PromethION 测序芯片 5000

** 请注意:自收到之日起,芯片须一直贮存于Oxford Nanopore Technologies推荐的条件下。且质检结果须在质检后的两天内递交给我们。请您按照 测序芯片质检文档中的说明进行芯片质检。

重要

我们不建议在测序前混合含条码文库与无条码文库。

免扩增条形码测序试剂盒-24 V14(SQK-NBD114.24)内容物

请注意: 我们正在将部分试剂的包装形式由单次管装改为瓶装,并减低EDTA的浓度。

管装试剂及高浓度装EDTA:

SQK-NBD114.24 较高浓度装EDTA的管盖为透明色。


瓶装试剂并减低EDTA浓度:

SQK-NBD114.24 bottle format 较低浓度装EDTA的管盖为蓝色。

请注意: 本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20℃下储存(试剂稳定性将不受损害)。

请注意: DNA参照(DCS)是一段可比对到Lambda基因组的3'端、长度为3.6 kb 的标准扩增子。

您可考虑购买免扩增条形码扩展包(EXP-NBA114)及测序辅助扩展包(EXP-AUX003),以最大化利用免扩增条形码试剂盒。

上述扩展包旨在提供额外的建库及测序芯片预处理试剂,方便用户使用条形码测序试剂盒中剩余的少部分条形码运行测序实验。

当联用时,两扩展包内试剂可满足12次反应。如果您在此过程中需要额外的 EDTA,我们建议使用浓度为0.25M的EDTA。如果您使用不超过24种条码进行建库,则建议为每个样本添加4 µl的EDTA;如果使用25至96种条码进行建库,则建议添加2 µl。

免扩增条形码扩展包(EXP-NBA114)内容物:

EXP-NBA114 tubes

请注意: 本产品包含由贝克曼库尔特公司(Beckman Coulter, Inc)生产的 AMPure XP 试剂,并可与试剂盒一起于-20℃储存(试剂稳定性将不受损害)。

测序辅助扩展包 V14(EXP-AUX003)内容物:

EXP-AUX003 bottles

3. DNAseI treatment

材料
  • 2.6 x10^10 GC of rAAV per sample

耗材
  • DNase I (NEB, M0303)
  • 0.5 M EDTA (Fisher Scientific, 11568896)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 1.5 ml Eppendorf DNA LoBind 离心管

仪器
  • 热循环仪
  • Extraction hood
  • 迷你离心机
  • 盛有冰的冰桶
  • P1000移液枪和枪头
  • P200 移液枪和枪头
  • P100移液枪和枪头
  • P20 移液枪和枪头

DNAseI treatment is carried out before extraction to remove any non-encapsidated DNA from the rAAV preparations.

Thaw the DNaseI reaction buffer and rAAV lysates (if they have been stored in the freezer) at room temperature and place on ice.

重要

The following steps with rAAV samples should be carried out in an extraction hood to avoid contamination.

Prepare each rAAV sample in nuclease-free water:

  1. Transfer ≥2.6 x10^10 GC of AAV sample into a 1.5 ml Eppendord DNA LoBind tube.
  2. Adjust the volume to 170 µl with nuclease-free water.
  3. Mix by pipetting up and down.
  4. Spin down briefly in a microfuge.

Combine the following reagents in the 1.5 ml Eppendorf DNA LoBind tube for each sample.

Reagent Volume
rAAV sample (≥2.6 x10^10 GC per sample) 170 µl
DNAseI reaction buffer 20 µl
DNAseI 10 µl
Total 200 µl

轻轻吹打以充分混匀,并瞬时离心。

Using a thermal cycler, incubate at 37°C for 10 minutes.

Add 2 µl of 0.5 M EDTA to each sample and mix thoroughly by pipetting and spin down briefly.

Using a thermal cycler, incubate at 72°C for 10 minutes.

步骤结束

Take your treated rAAV lysate samples forward into the DNA extraction step.

4. DNA extraction from rAAV

材料
  • DNAseI treated rAAV lysate samples

耗材
  • PureLink™ Viral RNA/DNA Mini Kit (Thermo Fisher, 12280050)
  • Qubit 1x dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q33230)
  • Qubit™ ssDNA Assay Kit (ThermoFisher, Q10212)
  • Ethanol, 100% (e.g. Fisher, 16606002)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 2 ml Eppendorf DNA LoBind 离心管
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • Qubit™ 分析管(Invitrogen, Q32856)

仪器
  • 迷你离心机
  • 涡旋混匀仪
  • 热循环仪
  • Eppendorf 5424 离心机(或等效器材)
  • P1000移液枪和枪头
  • P100移液枪和枪头
  • P200 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
  • Qubit荧光计(或用于质控检测的等效仪器)

This extraction step is performed using the PureLink™ Viral RNA/DNA Mini Kit and includes steps from the user guide for completeness.

The PureLink™ Viral RNA/DNA Mini Kit user guide is available here.

Add 60 ml of 96-100% ethanol to 15 ml of Wash Buffer (WII) and store at room temperature.

Add 310 µl nuclease-free water directly to the tube of 310 µg lyophilised Carrier RNA to obtain 1 µg/µl Carrier RNA stock solution and mix thoroughly.

Calculate the volume of Lysis Buffer/Carrier RNA mix required to process the desired number of samples simultaneously using the following formula:

N x 0.21 ml (volume of Lysis Buffer/reaction) = A ml A ml x 28 µl/ml = B µl

N = number of samples A = calculated volume of Lysis Buffer B = calculated volume of 1 µg/µl Carrier RNA stock solution to add to Lysis Buffer


Worked example for 6 samples:

6 x 0.21 ml = 1.26 ml 1.26 ml x 28 µl/ml = 35.28 µl

1.26 ml of Lysis Buffer 35.28 µl of Carrier RNA stock solution

Aliquot the Carrier RNA stock solution and take forward the required volume into the next step. Store any excess aliquots at -20°C and avoid repeated freezing and thawing.

重要

Do NOT vortex the Lysis Buffer as this will generate a foam.

In a sterile 2 ml Eppendorf DNA LoBind tube, add the calculated volume of Carrier RNA stock solution to the calculated volume of Lysis Buffer and mix gently by pipetting.

For 6 samples, add 35.28 µl of Carrier RNA stock solution to 1.26 ml of Lysis Buffer.

Store the buffer at 4°C until use.

重要

The Lysis Buffer must be used within an hour.

Add 25 µl Proteinase K into a fresh 1.5 ml Eppendorf DNA LoBind tube for each sample.

Spin down the DNAseI treated rAAV samples.

Transfer 200 µl of an rAAV lysate sample to a tube containing Proteinase K and repeat for each sample into separate tubes.

Note: Ensure the rAAV samples are at room temperature and not combined.

Add 200 µl Lysis Buffer to each tube. Close the tube lids and mix by vortexing for 15 seconds.

Incubate at 56°C for 15 minutes.

Briefly centrifuge the tubes to remove any drops from the inside of the lids.

Add 250 µl 96-100% ethanol to each tube to obtain a final concentration of 37% and mix by vortexing for 15 seconds.

Incubate the tubes with ethanol for 5 minutes at room temperature and spin down.

Spin down the tubes to remove any drops from the lids.

Transfer each lysate with ethanol (~675 µl) into a new Viral Spin Column.

Centrifuge the columns at ~6,800 x g for 1 minute. Discard the collection tubes with the flow-through.

Place the Viral Spin Columns in clean Wash Tubes and add 500 µl Wash Buffer (WII) with ethanol to the Viral Spin Columns.

Centrifuge the columns at ~6,800 x g for 1 minute. Discard the flow-through and place the spin columns back into the Wash Tubes.

Add 500 µl Wash Buffer (WII) with ethanol into the spin columns.

Centrifuge the columns at ~6,800 x g for 1 minute. Discard the Wash Tubes containing the flow-through.

Place the spin columns into clean Wash Tubes.

Centrifuge the columns at maximum speed in the microcentrifuge for 1 minute to dry the membranes completely. Discard the Wash Tubes with the flow-through.

Place the Viral Spin Columns in clean 1.5 ml Eppendorf DNA LoBind tubes.

Add 50 µl of nuclease-free water into the centre of each of the spin columns and close the lids.

Incubate at room temperature for 1 minute.

Centrifuge the spin columns at maximum speed for 1 minute. The Eppendorf DNA LoBind tubes will contain the extracted rAAV DNA for each sample. Remove and discard the spin columns.

CHECKPOINT

Quantify 1 µl of eluted sample using the ssDNA and dsDNA HS Qubit Assay kit and Qubit fluorometer.

Note: The carrier RNA in PureLink™ kit may affect the ssDNA Qubit measurements.

步骤结束

Take the extracted rAAV DNA samples into the optional annealing step or the library preparation step. Samples can be stored at -80°C for later use.

5. (Optional) Annealing

材料
  • Extracted rAAV samples

耗材
  • 50X annealing buffer (2.5 M NaCl, 500 mM Tris-HCl, pH 7.5)
  • Qubit™ ssDNA Assay Kit (ThermoFisher, Q10212)
  • Qubit 1x dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q33230)
  • Qubit™ 分析管(Invitrogen, Q32856)
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate

仪器
  • 热循环仪
  • P200 移液枪和枪头
  • P100移液枪和枪头
  • P20 移液枪和枪头
可选仪器
  • Qubit荧光计(或用于质控检测的等效仪器)

This optional self-hybridisation step can be used to self-anneal any remaining (+) and (-) single strands of rAAV vector together before library preparation.

This step can be skipped and the library preparation started immediately as we have found higher amounts of full-length inverted terminal repeat (ITR) sequences without the annealing step.

Prepare the 50X annealing buffer (2.5 M NaCl, 500 mM Tris-HCl, pH 7.5).

Add 1 µl of 50X annealing buffer (2.5 M NaCl, 500 mM Tris-HCl, pH 7.5) to each rAAV sample, to reach a total volume of 50 µl.

Transfer each sample to a clean 0.2 ml PCR tube or a PCR plate.

In a thermal cycler, incubate the tubes at 95°C for 5 minutes before ramping down to 25°C (1 minute per 1°C).

可选操作

Quantify 1 µl of recovered rAAV using the dsDNA and ssDNA HS Qubit assay with a Qubit fluorometer.

步骤结束

Take the remaining samples forward into the library preparation step.

6. End-prep

材料
  • Extracted rAAV DNA in 50 µl per sample
  • AMPure XP 磁珠(AXP)

耗材
  • NEBNext® Ultra II 末端修复/ dA尾添加模块(NEB,E7546)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(Invitrogen, Q32851)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • 0.2 ml thin-walled PCR tubes or 0.2 ml 96-well PCR plate
  • Qubit™ 分析管(Invitrogen, Q32856)

仪器
  • 多通道移液枪和枪头
  • 热循环仪
  • 迷你离心机
  • 盛有冰的冰桶
  • 磁力架
  • 涡旋混匀仪
  • Hula混匀仪(低速旋转式混匀仪)
  • Qubit荧光计 (或用于质控检测的等效仪器)
  • P1000 移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
  • P2 移液枪和枪头
CHECKPOINT

测序芯片质检

我们强烈建议您在开始文库制备前,对测序芯片的活性纳米孔数进行质检,以确保测序实验顺利运行。

详情请参阅 MinKNOW 实验指南中的 测序芯片质检说明

Thaw the AMPure XP Beads (AXP) at room temperature and mix by vortexing. Keep the beads at room temperature until use.

Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:

For optimal performance, NEB recommend the following:

  1. Thaw all reagents on ice.

  2. Ensure the reagents are well mixed.
    Note: Do not vortex the Ultra II End Prep Enzyme Mix.

  3. Always spin down tubes before opening for the first time each day.

  4. The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.

If the optional annealing step was skipped, make up each AAV sample to 50 µl with nuclease-free water.

For each rAAV sample, combine the following reagents in a 0.2 ml PCR tube.

Between each addition, pipette mix 10-20 times.

Reagent Volume
rAAV DNA 50 µl
NEBNext Ultra II End-prep Reaction Buffer 7 µl
NEBNext Ultra II End-prep Enzyme Mix 3 µl
Total 60 µl

充分吹打混匀管中试剂,再瞬时离心。

使用热循环仪,在20℃下孵育5分钟,然后在65℃下孵育5分钟。

将各样本分别转至对应的洁净的1.5 ml Eppendorf DNA LoBind离心管中。

涡旋振荡以重悬AMPure XP磁珠(AXP)。

将60µl重悬的AMPure XP磁珠(AXP)加入DNA末端修复反应体系中,轻弹试管以充分混合。

Incubate the samples on a Hula Mixer (rotator mixer) for 10 minutes at room temperature.

使用无核酸酶水,新鲜制备足量的80%乙醇。请为每个样本预留至少400 µl,并留有余量。

将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去清液。

保持离心管在磁力架上不动,以200µl新鲜制备的80%乙醇洗涤磁珠。小心不要扰动磁珠。用移液枪将乙醇吸走并弃掉。

如在此过程中不慎扰动磁珠,请静待磁珠和液相分离后再吸出乙醇。

重复上述步骤。

将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥30秒,但不要干至表面开裂。

Remove the tubes from the magnetic rack and resuspend the pellet in 10 µl nuclease-free water.

Incubate the samples on a Hula Mixer (rotator mixer) for 10 minutes at room temperature.

将离心管静置于磁力架上,直到磁珠和液相分离,且洗脱液澄清无色。

Remove and retain 10 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

CHECKPOINT

取1µl的各洗脱样本,用Qubit荧光计分别定量。

步骤结束

取等摩尔质量的各样本,用于稍后的免扩增条形码连接步骤。如需要,您也可以此时将样品置于4℃储存过夜。

7. Native barcode ligation

材料
  • 免扩增条形码(NB01-24)
  • AMPure XP 磁珠(AXP)
  • EDTA(EDTA)

耗材
  • NEB Blunt/TA 连接酶预混液(NEB,M0367)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)
  • 新制备的80%乙醇(用无核酸酶水配制)
  • 无核酸酶水(如ThermoFisher,AM9937)
  • 1.5 ml Eppendorf DNA LoBind离心管
  • 0.2 ml PCR tubes
  • Qubit™ 分析管(Invitrogen, Q32856)

仪器
  • 磁力架
  • 涡旋混匀仪
  • Hula混匀仪(低速旋转式混匀仪)
  • 迷你离心机
  • 热循环仪
  • 盛有冰的冰桶
  • 多通道移液枪和枪头
  • P1000 移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
  • P2 移液枪和枪头
  • Qubit荧光计(或用于质控检测的等效仪器)

根据生产厂家的说明准备NEB Blunt/TA 连接酶预混液,并置于冰上:

  1. 于室温下解冻试剂。

  2. 瞬时离心试剂管5秒。

  3. 上下吹打整管试剂10次,以确保充分混匀。

于室温下解冻EDTA,并涡旋振荡混匀,然后瞬时离心,置于冰上。

根据样本数目,于室温下解冻相应数目的免扩增条形码(NB01-24)。分别吹打混匀,再瞬时离心后置于冰上。

Select a unique barcode for each sample to be run together on the same flow cell.

Note: Only use one barcode per sample.

In clean 0.2 ml PCR-tubes, add the reagents in the following order per well:

Between each addition, pipette mix 10 - 20 times.

Reagent Volume
End-prepped rAAV DNA 7.5 µl
Native Barcode (NB01-24) 2.5 µl
Blunt/TA Ligase Master Mix 10 µl
Total 20 µl

轻轻吹打以充分混匀,并瞬时离心。

室温下孵育20分钟。

按下表向每管/每孔内加入对应体积的EDTA,吹打混匀,然后瞬时离心。

注意: 请根据EDTA的管盖颜色进行相应操作。

EDTA 管盖颜色 每孔/每管体积
透明管盖的EDTA 2 µl
蓝色管盖的EDTA 4 µl
提示

在此步骤中添加EDTA的目的是终止反应。

Pool all the barcoded samples in a 1.5 ml Eppendorf DNA LoBind tube.

Note: Ensure you follow the instructions for the cap colour of your EDTA tube.

Volume per sample For 6 samples
Total volume for preps using clear cap EDTA 22 µl 132 µl
Total volume for preps using blue cap EDTA 24 µl 144 µl

涡旋振荡以重悬AMPure XP磁珠(AXP)。

Add AMPure XP Beads (AXP) to the pooled reaction, and mix by pipetting for a 0.4X clean.

Note: Ensure you follow the instructions for the cap colour of your EDTA tube.

/ Volume per sample For 6 samples
Volume of AXP for preps using clear cap EDTA 9 µl 53 µl
Volume of AXP for preps using blue cap EDTA 10 µl 58 µl

将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育10分钟。

准备 2 ml 新制备的80%乙醇(用无核酸酶水配制)。

将样品瞬时离心,再静置于磁力架上5分钟待磁珠和液相分离。保持离心管在磁力架上不动,直到洗脱液澄清无色,吸出上清。

保持离心管在磁力架上不动,以700µl新鲜制备的80%乙醇洗涤磁珠。小心不要扰动磁珠。用移液枪将乙醇吸走并弃掉。

如在此过程中不慎扰动磁珠,请静待磁珠和液相分离后再吸出乙醇。

重复上述步骤。

将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的乙醇。让磁珠在空气中干燥约30秒,但不要干至表面开裂。

将离心管从磁力架上移开。将磁珠重悬于35µl的无核酸酶水中,轻弹离心管混匀。

37℃下孵育10分钟。请每两分钟轻弹离心管10秒以搅动样本,促进DNA洗脱。

将离心管静置于磁力架上,直到磁珠和液相分离,且洗脱液澄清无色。

Remove and retain 35 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

CHECKPOINT

取1µl洗脱样品,用Qubit荧光计定量。

步骤结束

连有条形码的DNA样本将用于稍后的接头连接及纯化步骤。如需要,您也可以此时将样品置于4℃储存过夜。

8. Adapter ligation and clean-up

材料
  • 短片段缓冲液(SFB)
  • 洗脱缓冲液(EB)
  • 免扩增接头(NA)
  • AMPure XP 磁珠(AXP)

耗材
  • NEBNext®快速连接模块(NEB,E6056)
  • NEBNext®快速连接反应缓冲液(NEB,B6058)
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • Qubit™ 分析管(Invitrogen, Q32856)
  • Qubit dsDNA HS Assay(双链DNA高灵敏度检测)试剂盒(ThermoFisher,Q32851)

仪器
  • 迷你离心机
  • 磁力架
  • 涡旋混匀仪
  • Hula混匀仪(低速旋转式混匀仪)
  • 热循环仪
  • P1000 移液枪和枪头
  • P200 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
  • 盛有冰的冰桶
  • Qubit荧光计(或用于质控检测的等效仪器)
重要

本试剂盒及实验指南中所使用的免扩增接头(NA) 不能与其它测序接头互换使用。

根据生产厂家的说明准备NEBNext 快速连接反应模块,并置于冰上:

  1. 于室温下解冻试剂。

  2. 瞬时离心试剂管5秒。

  3. 下吹打全部体积的试剂10次,以确保充分混匀。 注意: 请勿涡旋振荡快速T4 DNA连接酶。

NEBNext快速连接反应缓冲液(5x)内可能存在少量沉淀。请待该缓冲液回复至室温后,吹打数次使沉淀溶解,再涡旋振荡数秒以充分混匀。

将免扩增接头(NA)和T4连接酶瞬时离心后吹打混匀,然后置于冰上。

Thaw the Elution Buffer (EB) and Short Fragment Buffer (SFB) at room temperature, before mixing by vortexing. Then spin down and place on ice.

在一支1.5ml Eppendorf LoBind离心管内,将所有试剂按以下顺序混合:

每添加一样试剂后,请吹打混匀10-20次,再添加下一样试剂。

试剂 体积
混合后的含条码样本 30 µl
免扩增接头(NA) 5 µl
NEBNext快速连接反应缓冲液(5X) 10 µl
NEBNext快速T4 DNA连接酶 5 µl
总体积 50 µl

轻轻吹打以充分混匀,并瞬时离心。

室温下孵育20分钟。

重要

The next clean-up step uses Short Fragment Buffer (SFB) rather than 80% ethanol to wash the beads. The use of ethanol will be detrimental to the sequencing reaction.

涡旋振荡以重悬AMPure XP磁珠。

将20µl重悬的AMPure XP磁珠加入反应体系中,吹打混匀。

将离心管置于Hula混匀仪(低速旋转式混匀仪)上室温孵育10分钟。

将样品瞬时离心,并静置于磁力架上待磁珠和液相分离。保持离心管在磁力架上不动,用移液枪吸去清液。

Wash the beads by adding either 125 μl Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.

重复上述步骤。

将离心管瞬时离心后置于磁力架上。用移液枪吸走残留的清液。

将离心管从磁力架上移开。将磁珠重悬于15µl洗脱缓冲液中(EB)。

瞬时离心,然后在37℃下孵育10分钟。请每两分钟轻弹离心管10秒以搅动样本,促进DNA洗脱。

将离心管静置于磁力架上至少一分钟,直到磁珠和液相分离,且洗脱液澄清无色。

将此15µl洗脱液转移至一支新的1.5ml Eppendorf DNA LoBind管中。

丢弃磁珠

CHECKPOINT

取1µl洗脱样品,用Qubit荧光计定量。

重要

We recommend loading 12 µl of the final prepared library onto the R10.4.1 flow cell.

This protocol has been written to maximise the output from the flow cells with the limited starting input.

步骤结束

构建好的文库即可用于测序芯片上样。在上样前,请将文库置于冰上。

提示

文库保存建议

若为 短期 保存或重复使用(例如在清洗芯片后再次上样),我们建议将文库置于Eppendorf LoBind 离心管中 4℃ 保存。 若为一次性使用且储存时长 __超过3个月__,我们建议将文库置于Eppendorf LoBind 离心管中 -80℃ 保存。

9. MinION及GridION 测序芯片的预处理及上样

材料
  • 测序芯片冲洗液(FCF)
  • 测序芯片系绳(FCT)
  • 文库溶液(LIS)
  • 文库颗粒(LIB)
  • 测序缓冲液(SB)

耗材
  • MinION及GridION测序芯片
  • 1.5 ml Eppendorf DNA LoBind 离心管
  • 无核酸酶水(如ThermoFisher,AM9937)
  • (非必需)牛血清白蛋白(BSA)(50 mg/mL)(例如 Invitrogen™ UltraPure™ BSA (50 mg/mL), AM2616)

仪器
  • MinION 或 GridION 测序仪
  • MinION 及GridION 测序芯片遮光片
  • P1000 移液枪和枪头
  • P100 移液枪和枪头
  • P20 移液枪和枪头
  • P10 移液枪和枪头
重要

请注意:本试剂盒仅兼容R10.4.1测序芯片(FLO-MIN114)。

提示

测序芯片的预处理及上样

我们建议所有新用户在首次运行测序芯片前,观看视频测序芯片的预处理及上样

于室温下解冻测序缓冲液(SB)、文库颗粒(LIB)或文库溶液(LIS)、测序芯片系绳(FCT)和一管测序芯片冲洗液(FCF)。完全解冻后,涡旋振荡混匀,然后瞬时离心并置于冰上。

重要

为在MinION及GridION R10.4.1测序芯片(FLO-MIN114)上获得最优的测序表现并提高测序产出,我们推荐您向测序芯片预处理液中加入终浓度为0.2 mg/ml的牛血清白蛋白(BSA)。

请注意: 我们不推荐使用其它类型的白蛋白(例如重组人血清白蛋白)。

按下表制备测序芯片的预处理液,室温下吹打混匀。

请注意: 我们正在将部分试剂的包装形式由单次管装改为瓶装。请按照与您所用试剂盒包装相对应的说明操作。

单次使用管装: 向一整管测序芯片冲洗液(FCF)中加入5µl 50mg/ml的牛血清白蛋白(BSA)及 30µl 测序芯片系绳(FCT)。

瓶装: 请另拿一支适当体积的离心管制备测序芯片预处理液:

试剂 体积(每张芯片)
测序芯片冲洗液 (FCF) 1,170 µl
50mg/ml的牛血清白蛋白 (BSA) 5 µl
测序芯片系绳 (FCT) 30 µl
总体积 1,205 µl

打开MinION或GridION测序仪的盖子,将测序芯片插入金属固定夹的下方。用力向下按压芯片,以确保正确的热、电接触。

中文-测序芯片预处理上样1a

中文-测序芯片预处理上样1b

可选操作

为文库上样前,完成测序芯片检测,查看可用孔数目。

如此前已对测序芯片进行过质检,则此步骤可省略。

更多信息,请查看MinKNOW实验手册的 测序芯片质检 部分。

顺时针转动预处理孔孔盖,使预处理孔显露出来。

中文-测序芯片预处理上样2

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入预处理孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
    __请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。

中文-测序芯片预处理上样3

通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。

中文-测序芯片预处理上样4

将含有文库颗粒的LIB管用移液枪吹打混匀。

重要

LIB管内的文库颗粒分散于悬浮液中。由于颗粒沉降速度非常快,因此请在混匀颗粒后立即使用。

对于大多数测序实验,我们建议使用文库颗粒(LIB)。然而,对于粘度较高的文库,可以考虑使用文库溶液(LIS)。

在一支新的1.5ml Eppendorf LoBind离心管中,按下表所示准备上样文库:

试剂 体积(每张测序芯片)
测序缓冲液(SB) 37.5 µl
文库颗粒(LIB),使用前即时混匀;或文库溶液(LIS) 25.5 µl
DNA文库 12 µl
总体积 75 µl

完成测序芯片的预处理:

  1. 轻轻地翻起SpotON上样孔盖,使SpotON上样孔显露出来。 中文-测序芯片预处理上样5
  2. 通过预处理孔(而 SpotON加样孔)向芯片中加入200µl预处理液,避免引入气泡。 中文-测序芯片预处理上样6

临上样前,用移液枪轻轻吹打混匀制备好的文库。

通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。

中文-测序芯片预处理上样7

轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。

中文-测序芯片预处理上样8

中文-测序芯片预处理上样9

重要

为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。

我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。

按下述步骤安装测序芯片遮光片:

  1. 小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。

  2. 将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。

MinION加装遮光片

注意

MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。

步骤结束

小心合上测序设备上盖并在MinKNOW上设置测序实验。

10. Washing and reloading a flow cell

材料
  • 测序芯片清洗剂盒(EXP-WSH004)
  • Sequencing Buffer (SB)
  • 文库颗粒(LIB)
  • 文库溶液(LIS)
  • Flow Cell Tether (FCT)
  • Flow Cell Flush (FCF)

耗材
  • 1.5 ml Eppendorf DNA LoBind 离心管

仪器
  • Vortex mixer
  • 盛有冰的冰桶
  • P1000 pipette and tips
  • P200 移液枪和枪头
  • P10 移液枪和枪头

Flow cell washing and reloading

Due to the low input material for the library preparation, low pore occupancy (<25% of active pore) can occur before enough data is generated for data analysis. Therefore, we recommend washing and reloading your flow cell with fresh library to maintain high data acquisition when approximately ~25% of active pores remain.

The Flow Cell Wash Kit removes most of the initial library as well as unblocking pores to prepare the flow cell for loading a new library for further sequencing. Pore availability can be viewed on the Pore Activity or the Pore Scan plot on MinKNOW.

提示

We recommend keeping the light shield on the flow cell during washing if a second library will be loaded straight away.

If the flow cell is to be washed and stored, the light shield can be removed.

重要

A P1000 pipette must be used for all flushing steps to create a seal with the flow cell ports.

Place the tube of Wash Mix (WMX) on ice. Do not vortex the tube.

Thaw one tube of Wash Diluent (DIL) at room temperature.

Mix the contents of Wash Diluent (DIL) thoroughly by vortexing, then spin down briefly and place on ice.

In a fresh 1.5 ml Eppendorf DNA LoBind tube, prepare the following Flow Cell Wash Mix:

Reagent Volume per flow cell
Wash Mix (WMX) 2 μl
Wash Diluent (DIL) 398 μl
Total 400 μl

Mix well by pipetting, and place on ice. Do not vortex the tube.

Pause the sequencing experiment in MinKNOW, and leave the flow cell in the device.

重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Close the priming port and SpotON sample port cover, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Slide the flow cell priming port cover clockwise to open.

Flow Cell Loading Diagrams Step 2 (3)

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

Slowly load 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.
  4. Set a timer for a 5 minute incubation.

Loading wash mix 200ul slow min grid

Once the 5 minute incubation is complete, carefully load the remaining 200 µl of the prepared flow cell wash mix into the priming port, as follows:

  1. Using a P1000 pipette, take the remaining 200 µl of the flow cell wash mix
  2. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  3. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, leaving a small volume of buffer in the pipette tip.

Loading wash mix 200ul slow min grid

Close the priming port and wait for 1 hour.

Flow Cell Loading Diagrams Step 9

重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Ensure the priming port and SpotON sample port covers are closed, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

重要

The buffers used in this process are incompatible with conducting a Flow Cell Check step prior to loading the subsequent library. However, number of available pores will be reported after the next pore scan.

于室温下解冻测序缓冲液(SB)、文库颗粒(LIB)或文库溶液(LIS)、测序芯片系绳(FCT)和一管测序芯片冲洗液(FCF)。完全解冻后,涡旋振荡混匀,然后瞬时离心并置于冰上。

重要

为在MinION及GridION R10.4.1测序芯片(FLO-MIN114)上获得最优的测序表现并提高测序产出,我们推荐您向测序芯片预处理液中加入终浓度为0.2 mg/ml的牛血清白蛋白(BSA)。

请注意: 我们不推荐使用其它类型的白蛋白(例如重组人血清白蛋白)。

按下表制备测序芯片的预处理液,室温下吹打混匀。

请注意: 我们正在将部分试剂的包装形式由单次管装改为瓶装。请按照与您所用试剂盒包装相对应的说明操作。

单次使用管装: 向一整管测序芯片冲洗液(FCF)中加入5µl 50mg/ml的牛血清白蛋白(BSA)及 30µl 测序芯片系绳(FCT)。

瓶装: 请另拿一支适当体积的离心管制备测序芯片预处理液:

试剂 体积(每张芯片)
测序芯片冲洗液 (FCF) 1,170 µl
50mg/ml的牛血清白蛋白 (BSA) 5 µl
测序芯片系绳 (FCT) 30 µl
总体积 1,205 µl

顺时针转动预处理孔孔盖,使预处理孔显露出来。

中文-测序芯片预处理上样2

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles:

  1. Set a P1000 pipette to 200 µl.
  2. Insert the tip into the flow cell priming port.
  3. Turn the wheel until the dial shows 220-230 µl, or until you can see a small volume of buffer/liquid entering the pipette tip.
  4. Visually check that there is continuous buffer from the flow cell priming port across the sensor array.

Flow Cell Loading Diagrams Step 03 V5

通过预处理孔向芯片中加入800µl预处理液,避免引入气泡。等待5分钟。在此期间,请按照以下步骤准备用于上样的DNA文库。 (1)

中文-测序芯片预处理上样4

重要

It is vital to wait five minutes between the priming mix flushes to ensure effective removal of the nuclease.

Close the priming port and wait five minutes.

During this time, prepare the library for loading by following the steps below.

将含有文库颗粒的LIB管用移液枪吹打混匀。

重要

LIB管内的文库颗粒分散于悬浮液中。由于颗粒沉降速度非常快,因此请在混匀颗粒后立即使用。

对于大多数测序实验,我们建议您使用文库颗粒(LIB)。但如文库较为粘稠,您可考虑使用文库溶液(LIS)。

在一支新的1.5ml Eppendorf LoBind离心管中,按下表所示准备上样文库:

试剂 体积(每张测序芯片)
测序缓冲液(SB) 37.5 µl
文库颗粒(LIB),使用前即时混匀;或文库溶液(LIS) 25.5 µl
DNA文库 12 µl
总体积 75 µl
重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Ensure the priming port and SpotON sample port covers are closed, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Slide the flow cell priming port cover clockwise to open.

Flow Cell Loading Diagrams Step 2 (3)

重要

从测序芯片中反旋排出缓冲液。请勿吸出超过20-30µl的缓冲液,并确保芯片上的纳米孔阵列一直有缓冲液覆盖。将气泡引入阵列会对纳米孔造成不可逆转地损害。

将预处理孔打开后,检查孔周围是否有小气泡。请按照以下方法,从孔中排出少量液体以清除气泡:

  1. 将P1000移液枪转至200µl刻度。
  2. 将枪头垂直插入预处理孔中。
  3. 反向转动移液枪量程调节转纽,直至移液枪刻度在220-230 µl之间,或直至您看到有少量缓冲液进入移液枪枪头。
    __请注意:__ 肉眼检查,确保从预处理孔到传感器阵列的缓冲液连续且无气泡。

中文-测序芯片预处理上样3

Slowly load 200 µl of the priming mix into the flow cell priming port, as follows:

  1. Ensure the priming port is open and gently lift open the SpotON sample port.
  2. Using a P1000 pipette, take 200 µl of the priming mix
  3. Insert the pipette tip into the priming port, ensuring there are no bubbles in the tip
  4. Slowly twist the pipette wheel down to load the flow cell (if possible with your pipette) or push down the plunger very slowly, as illustrated in the video above, leaving a small volume of buffer in the pipette tip.
重要

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Close the priming port and SpotON sample port cover, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Slide open the priming port cover and gently lift open the SpotON sample port cover.

临上样前,用移液枪轻轻吹打混匀制备好的文库。

通过SpotON加样孔向芯片中逐滴加入75µl样品。确保液滴流入孔内后,再加下一滴。

中文-测序芯片预处理上样7

轻轻合上SpotON加样孔孔盖,确保塞头塞入加样孔内。逆时针转动预处理孔孔盖,盖上预处理孔。

中文-测序芯片预处理上样8

中文-测序芯片预处理上样9

重要

为获得最佳测序产出,在文库样本上样后,请立即在测序芯片上安装遮光片。

我们建议在清洗芯片并重新上样时,将遮光片保留在测序芯片上。一旦文库从测序芯片中吸出,即可取下遮光片。

按下述步骤安装测序芯片遮光片:

  1. 小心将遮光片的前沿(平端)与金属固定夹的边沿对齐。 请注意: 请勿将遮光片强行压到固定夹下方。

  2. 将遮光片轻轻盖在测序芯片上。遮光片的SpotON加样孔孔盖缺口应与芯片上的SpotON加样孔孔盖接合,遮盖住整个测序芯片的前部。

MinION加装遮光片

注意

MinION测序芯片的遮光片并非固定在测序芯片上,因此当为芯片加装遮光片后,请小心操作。

步骤结束

Resume the sequencing run in MinKNOW to continue data acquisition.

11. Data acquisition and basecalling

How to start sequencing

Once you have loaded your flow cell, the sequencing run can be started on MinKNOW, our sequencing software that controls the device, data acquisition and real-time basecalling. For more detailed information on setting up and using MinKNOW, please see the MinKNOW protocol.

MinKNOW can be used and set up to sequence in multiple ways:

  • On a computer either direcly or remotely connected to a sequencing device.
  • Directly on a GridION, MinION Mk1C or PromethION 24/48 sequencing device.

For more information on using MinKNOW on a sequencing device, please see the device user manuals:

Open the MinKNOW software using the desktop shortcut and log into the MinKNOW software using your Community credentials.

Click on your connected device.

min running

Set up a sequencing run by clicking Start sequencing.

Edit 1

Type in the experiment name, select the flow cell postition and enter sample ID. Choose FLO-MIN114 flow cell type from the drop-down menu.

Click Continue to kit selection.

Edit 2

Click the Native Barcoding Kit 24 V14 (SQK-NBD114.24).

Click Continue to Run Options to continue.

Screenshot 2023-04-03 103028

Keep the run options to their default settings of 72 hour run length and 200 bp minimum read length.

Minimum read length can be reduced down to 20 bp to increase output by sequencing more short reads, such as contaminanting reads including ITR tetramers. During development of this protocol, it was noted that despite the increase in short reads, a higher proportion of short reads were of lower Qscore (≤9).

Click Continue to basecalling to continue.

Edit 4

Set up basecalling and barcoding using the following parameters:

  1. Ensure basecalling is ON.

  2. Next to Models, click Edit options and choose the High accuracy basecaller (HAC) from the drop-down menu.

  3. Ensure barcoding is ON and use the default settings.

  4. A reference sequence may be uploaded to perform live alignment but this may slow down system processing.

  5. Click Continue to output and continue.

Picture2

Set up the output format and filtering as follows:

  1. Raw reads is on and select .POD5 as the output format.

  2. Ensure .FASTQ is selected for basecalled reads.

  3. Filtering is on and use the default settings.

  4. Click Continue to final review to continue.

Picture3

Click Start to start sequencing.

You will be automatically navigated to the Sequencing Overview page to monitor the sequencing run.

Picture4

Data analysis after sequencing

After sequencing has completed on MinKNOW, the flow cell can be reused or returned, as outlined in the Flow cell reuse and returns section.

After sequencing and basecalling, the data can be analysed, as outlined in the Downstream analysis section.

12. 结束实验

材料
  • 测序芯片清洗剂盒(EXP-WSH004)

完成测序实验后,如您希望再次使用测序芯片,请按照测序芯片清洗试剂盒的说明进行操作,并将清洗后的芯片置于2-8℃保存。

您可在纳米孔社区获取 测序芯片清洗试剂盒实验指南

请按照“回收程序”清洗好芯片,以便送回Oxford Nanopore。

您可在 此处找到回收测序芯片的说明。

请注意: 在将测序芯片寄回之前,请使用去离子水对每张芯片进行冲洗。

重要

如果您遇到问题或对测序实验有疑问,请参阅本实验指南在线版本中的“疑难解答指南”一节。

13. Downstream analysis

Post-basecalling analysis

We recommend performing downstream analysis using EPI2ME Labs which facilitates bioinformatic analyses by allowing users to run Nextflow workflows in a desktop application. EPI2ME Labs maintains a collection of bioinformatic workflows which are curated and actively maintained by experts in long-read sequence analysis.

Further information about the available EPI2ME Labs workflows are available here, along with the Quick Start Guide to start your first bioinformatic workflow.

For the mapping of AAV sequences for quality control and validation, we recommend using the wf-aav-qc workflow which requires Nextflow, Java, and Docker to be installed before running the workflow.

A run report will be produced and includes multiple plots to enable easy assessment of an AAV vector, including a contamination graph, truncations graph, transgene expression read coverage and genome type frequency graph.

Open the EPI2ME app using the desktop shortcut.

Navigate to the available workflows tab and click on the wf-aav-qc workflow to download and click install.

image (122)

Install v2

Navigate to the installed tab and click on wf-aav-qc.

installed

Click "Run this workflow" to open the launch wizard.

Screenshot 2023-09-08 at 09.26.07

Set up your run by uploading your data files including the FASTQ input and host reference in the "Input Options". Fill in the basecaller configuration used to basecall your data and the other parameters can be kept to their default settings.

Screenshot 2023-09-08 at 09.27.59 (1)

Click "Launch workflow" in the top right corner.

Ensure all parameters options have green ticks.

launch

Once the workflow finishes, a report will be produced.

14. 在DNA/RNA提取和使用Kit 14建库过程中可能出现的问题

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

低质量样本

现象 可能原因 措施及备注
低纯度DNA(Nanodrop测定的DNA吸光度比值260/280<1.8,260/230 <2.0-2.2) 用户所使用的DNA提取方法未能达到所需纯度 您可在 污染物专题技术文档 中查看污染物对后续文库制备和测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

请考虑将样品再次用磁珠纯化。
RNA完整度低(RNA完整值(RIN)<9.5,或rRNA在电泳凝胶上的条带呈弥散状) RNA在提取过程中降解 请尝试其它 RNA 提取方法。您可在 RNA完整值专题技术文档 中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅 DNA/RNA 操作 页面。
RNA的片段长度短于预期 RNA在提取过程中降解 请尝试其它 RNA 提取方法。 您可在 RNA完整值专题技术文档中查看更多有关RNA完整值(RIN)的介绍。更多信息,请参阅DNA/RNA 操作 页面。

我们建议用户在无RNA酶污染的环境中操作,并确保实验设备没有受RNA酶污染.

经AMPure磁珠纯化后的DNA回收率低

现象 可能原因 措施及备注
低回收率 AMPure磁珠量与样品量的比例低于预期,导致DNA因未被捕获而丢失 1. AMPure磁珠的沉降速度很快。因此临加入磁珠至样品前,请确保将磁珠重悬充分混匀。

2. 当AMPure磁珠量与样品量的比值低于0.4:1时,所有的DNA片段都会在纯化过程中丢失。
低回收率 DNA片段短于预期 AMPure磁珠量与样品量的比值越低,针对短片段的筛选就越严格。每次实验时,请先使用琼脂糖凝胶(或其他凝胶电泳方法)确定起始DNA的长度,并据此计算出合适的AMPure磁珠用量。 SPRI cleanup
末端修复后的DNA回收率低 清洗步骤所用乙醇的浓度低于70% 当乙醇浓度低于70%时,DNA会从磁珠上洗脱下来。请确保使用正确浓度的乙醇。

15. Kit 14 测序过程中可能出现的问题

以下表格列出了常见问题,以及可能的原因和解决方法。

我们还在 Nanopore 社区的“Support”板块 提供了常见问题解答(FAQ)。

如果以下方案仍无法解决您的问题,请通过电邮(support@nanoporetech.com))或微信公众号在线支持(NanoporeSupport)联系我们。

Mux扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数

现象 可能原因 措施及备注
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 纳米孔阵列中引入了气泡 在对通过质控的芯片进行预处理之前,请务必排出预处理孔附近的气泡。否则,气泡会进入纳米孔阵列对其造成不可逆转地损害。 视频中演示了避免引入气泡的最佳操作方法。
MinKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 测序芯片没有正确插入测序仪 停止测序,将芯片从测序仪中取出,再重新插入测序仪内。请确保测序芯片被牢固地嵌入测序仪中,且达到目标温度。如用户使用的是GridION/PromethION测序仪,也可尝试将芯片插入仪器的其它位置进行测序。
inKNOW Mux 扫描在测序起始时报告的活性孔数少于芯片质检时报告的活性孔数 文库中残留的污染物对纳米孔造成损害或堵塞 在测序芯片质检阶段,我们用芯片储存缓冲液中的质控DNA分子来评估活性纳米孔的数量。而在测序开始时,我们使用DNA文库本身来评估活性纳米孔的数量。因此,活性纳米孔的数量在这两次评估中会有约10%的浮动。

如测序开始时报告的孔数明显降低,则可能是由于文库中的污染物对膜结构造成了损坏或将纳米孔堵塞。用户可能需要使用其它的DNA/RNA提取或纯化方法,以提高起始核酸的纯度。您可在 污染物专题技术文档中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的 提取方法

MinKNOW脚本失败

现象 可能原因 措施及备注
MinKNOW显示 "Script failed”(脚本失败)
重启计算机及MinKNOW。如问题仍未得到解决,请收集 MinKNOW 日志文件 并联系我们的技术支持。 如您没有其他可用的测序设备,我们建议您先将装有文库的测序芯片置于4°C 储存,并联系我们的技术支持团队获取进一步储存上的建议。

纳米孔利用率低于40%

现象 可能原因 措施及备注
纳米孔利用率<40% 测序芯片中的文库量不足 向MinION/GridION测序芯片中加入10–20 fmol的优质文库。请在上样前对文库进行定量,并使用 Promega Biomath Calculator 等工具中的“ dsDNA:µg to pmol”功能来计算DNA分子的摩尔量。
纳米孔利用率接近0 尽管您使用了免扩增条形码测序试剂盒,但在接头连接后的纯化步骤中,您并未使用LFB或SFB洗涤,而是选用了酒精。 酒精可导致测序接头上的马达蛋白变性。请确保在测序接头连接后使用LFB或SFB。
纳米孔利用率接近0 测序芯片中无系绳 系绳(FCT管)随预处理液加入芯片。因此在制备预处理液时,请确保将FCT加入测序芯片冲洗液(FCF)中。

读长短于预期

现象 可能原因 措施及备注
读长短于预期 DNA样本降解 读长反映了起始DNA片段的长度。起始DNA在提取和文库制备过程中均有可能被打断。

1. 1. 请查阅纳米孔社区中的 提取方法 以获得最佳DNA提取方案。

2. 在进行文库制备之前,请先跑电泳,查看起始DNA片段的长度分布。DNA gel2 在上图中,样本1为高分子量DNA,而样本2为降解样本。

3. 在制备文库的过程中,请避免使用吹打或/和涡旋振荡的方式来混合试剂。轻弹或上下颠倒离心管即可。

大量纳米孔处于不可用状态

现象 可能原因 Comments and actions
大量纳米孔处于不可用状态 (在通道面板和纳米孔活动状态图上以蓝色表示)

image2022-3-25 10-43-25 上方的纳米孔活动状态图显示:状态为不可用的纳米孔的比例随着测序进程而不断增加。
样本中含有污染物 使用MinKNOW中的“Unblocking”(疏通)功能,可对一些污染物进行清除。 如疏通成功,纳米孔的状态会变为"测序孔". 若疏通后,状态为不可用的纳米孔的比例仍然很高甚至增加:

1. 用户可使用 测序芯片冲洗试剂盒(EXP-WSH004)进行核酸酶冲洗 can be performed, 操作,或
2. 使用PCR扩增目标片段,以稀释可能导致问题的污染物。

大量纳米孔处于失活状态

现象 可能原因 措施及备注
大量纳米孔处于失活状态(在通道面板和纳米孔活动状态图上以浅蓝色表示。膜结构或纳米孔遭受不可逆转地损伤) 测序芯片中引入了气泡 在芯片预处理和文库上样过程中引入的气泡会对纳米孔带来不可逆转地损害。请观看 测序芯片的预处理及上样 视频了解最佳操作方法。
大量纳米孔处于失活/不可用状态 文库中存在与DNA共纯化的化合物 与植物基因组DNA相关的多糖通常能与DNA一同纯化出来。

1. 请参考 植物叶片DNA提取方法
2. 使用QIAGEN PowerClean Pro试剂盒进行纯化。
3. 利用QIAGEN REPLI-g试剂盒对原始gDNA样本进行全基因组扩增。
大量纳米孔处于失活/不可用状态 样本中含有污染物 您可在 污染物专题技术文档 中查看污染物对测序实验的影响。请尝试其它不会导致污染物残留的提取方法。

运行过程中过孔速度和数据质量(Q值)降低

现象 可能原因 措施及备注
运行过程中过孔速度和数据质量(Q值)降低 对试剂盒9系列试剂(如SQK-LSK109),当测序芯片的上样量过多时(请参阅相应实验指南获取推荐文库用量),能量消耗通常会加快。 请按照MinKNOW 实验指南中的说明为测序芯片补充能量。请在后续实验中减少测序芯片的上样量。

温度波动

现象 可能原因 措施及备注
温度波动 测序芯片和仪器接触不良 检查芯片背面的金属板是否有热垫覆盖。重新插入测序芯片,用力向下按压,以确保芯片的连接器引脚与测序仪牢固接触。如问题仍未得到解决,请联系我们的技术支持。

未能达到目标温度

现象 可能原因 措施及备注
MinKNOW显示“未能达到目标温度” 测序仪所处环境低于标准室温,或通风不良(以致芯片过热) MinKNOW会限定测序芯片达到目标温度的时间。当超过限定时间后,系统会显示出错信息,但测序实验仍会继续。值得注意的是,在错误温度下测序可能会导致通量和数据质量(Q值)降低。请调整测序仪的摆放位置,确保其置于室温下、通风良好的环境中后,再在MinKNOW中继续实验。有关MinION MK1B温度控制的更多信息,请参考此 FAQ (常见问题)文档。

Last updated: 4/23/2024

Document options

MinION