Ligation sequencing DNA XL V14 (SQK-LSK114-XL)


Descripción general

  • This protocol uses genomic DNA
  • Library preparation time ~120 minutes
  • Fragmentation optional
  • No PCR required
  • Suitable for processing multiple samples simultaneously, or automated library preparation
  • Compatible with R10.4.1 flow cells

For Research Use Only

Document version: GDX_9163_v114_revS_12Dec2024

1. Overview of the protocol

Introduction to the Ligation Sequencing Kit XL V14 (SQK-LSK114-XL) protocol

This protocol describes how to carry out sequencing of multiple DNA samples simultaneously using the Ligation Sequencing Kit XL V14 (SQK-LSK114-XL). It is recommended that a Lambda control experiment is completed first to become familiar with the technology.

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

  • Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • Download the software for acquiring and analysing your data
  • Check your flow cell to ensure it has enough pores for a good sequencing run

Library preparation

The table below is an overview of the steps required in the library preparation, including timings and optional stopping points.

Library preparation Process Time Stop option
DNA repair and end-prep Repair the DNA and prepare the DNA ends for adapter attachment 35 minutes 4°C overnight
Adapter ligation and clean-up Attach the sequencing adapters to the DNA ends 20 minutes 4°C short-term storage or for repeated use, such as re-loading your flow cell
-80°C for single-use, long-term storage.
We strongly recommend sequencing your library as soon as it is adapted.
Priming and loading the flow cell Prime the flow cell and load the prepared library for sequencing 5 minutes

LSK114 workflow

Sequencing and analysis

You will need to:

  • Start a sequencing run using the MinKNOW software which will collect raw data from the device and basecall reads.
  • Start the EPI2ME software and select a bioinformatics workflow to analyse your data.
IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

2. Equipment and consumables

Material
  • 1 µg (o 100-200 fmol) de ADN genómico de alto peso molecular
  • o 100+ ng de ADN genómico de alto peso molecular (si se fragmenta el ADN).
  • Ligation Sequencing Kit XL V14 (SQK-LSK114-XL)

Consumibles
  • Celda de flujo MinION/GridION
  • NEBNext® Companion Module v2 para Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7672S o E7672L)
  • Agencourt AMPure XP beads (Beckman Coulter™ cat # A63881)
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
  • Tubos de PCR de pared fina (0,2 ml)
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • Etanol al 80 % recién preparado con agua sin nucleasas
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)
  • (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

Instrumental
  • Dispositivo MinION o GridION
  • Pantalla protectora celdas de flujo MinION/GridION
  • Magnetic rack suitable for 96-well PCR plates, e.g. DynaMag™-96 Side Skirted Magnet (Thermo Fisher, cat # 12027)
  • OR magnetic separator suitable for 0.2 ml PCR tube strips, e.g. DynaMag™-PCR Magnet (Thermo Fisher, #492025) or DynaMag™-96 Side Magnet (Thermo Fisher, #12331D)
  • Mezclador Hula (mezclador giratorio suave)
  • Microcentrífuga
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • Mezclador vórtex
  • Termociclador
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipeta y puntas P2
  • Cubeta con hielo
  • Temporizador
  • Pipetting troughs
  • Fluorímetro Qubit (o equivalente para el control de calidad)
Equipo opcional
  • Bioanalizador Agilent (o equivalente)
  • Centrifuga Eppendorf 5424 (o equivalente)

Ajuste la cantidad de muestra en función de la longitud de la muestra de ADN inicial:

Longitud de fragmentos Cantidad de muestra inicial
Muy cortos (<1 kb) 200 fmol
Cortos (1-10 kb) 100–200 fmol
Largos (>10 kb) 1 µg

Para más información acerca de las cantidades de muestra inicial y de carga de las celdas de flujo en los protocolos de secuenciación por ligación, consulte este documento técnico

Cantidad de muestra inicial de ADN

Cómo realizar un control de calidad del ADN de la muestra inicial

Es importante que la muestra de ADN cumpla con los requisitos de cantidad y calidad. Usar demasiado ADN, poco o de mala calidad (p. ej., que esté muy fragmentado, que contenga ARN o contaminantes químicos), puede afectar a la preparación de la biblioteca.

Para realizar un control de calidad en la muestra de ADN, consulte el protocolo Input DNA/ RNA QC

Contaminantes químicos

Dependiendo de cómo se extraiga el ADN de la muestra cruda, ciertos contaminantes químicos pueden permanecer en el ADN purificado, lo cual afecta la eficacia de la preparación de la biblioteca y la calidad de la secuenciación. Encontrará más información sobre contaminantes en la página Contaminants de la comunidad Nanopore.

NEBNext® Companion Module v2 para secuenciación por ligación, de Oxford Nanopore Technologies®

Recomendamos el módulo de acompañamiento NEBNext® Companion Module v2 for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7672S or E7672L), que contiene todos los reactivos NEB necesarios para usar con el kit Ligation Sequencing Kit.

La versión previa, NEBNext® Companion Module de Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L) es compatible, pero el módulo recomendado v2 ofrece una ligación y adición de dA más efectiva, resultado del reactivo FFPEv2 DNA Repair Buffer y la ligasa Salt-T4 DNA Ligase, recpectivamente.
Con el módulo v2 también se consigue un notable ahorro de costes por preparación de muestra.

Nótese que, en los protocolos con amplicones no es necesario utilizar la mezcla de reparación de ADN, NEBNext FFPE DNA Repair Mix y es más rentable comprar los reactivos necesarios por separado.

Multichannel pipettes

For scaling up library prep using the Ligation Sequencing Kit XL, customers will need multichannel pipettes and appropriate pipette tips. Although the choice of brand is left to the user's discretion, our R&D team can recommend Rainin Pipet-Lite LTS L200-XLS+ (20–200 μl) and Pipet-Lit LTS L20-XLS+ (2–20 μl) pipettes and Rainin LTS pipette tips.

Reactivos de otros fabricantes

Oxford Nanopore Technologies ha probado y recomienda el uso de todos los reactivos de otros fabricantes citados en este protocolo. No se han evaluado otras alternativas.

Recomendamos preparar estos reactivos siguiendo las instrucciones del fabricante.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000
IMPORTANTE

A fin de garantizar un elevado rendimiento de ligación del adaptador Ligation Adapter (LA), recomendamos el uso del tampón Ligation Buffer (LNB) incluido en el kit Ligation Sequencing Kit V14, en lugar del tampón de ligasa de otros fabricantes.

IMPORTANTE

El adaptador incluido en este kit, Ligation Adapter (LA), no es intercambiable con otros adaptadores de secuenciación.

Ligation Sequencing Kit XL V14 (SQK-LSK114-XL) contents

SQK-LSK114-XL (1)

Name Acronym Vial colour Number of vials Fill volume per vial (µl)
DNA Control Strand DCS Yellow 1 100
Ligation Adapter LA Green 1 320
Ligation Buffer LNB White 1 1,500
Elution Buffer EB White cap, black strip label 1 10,000
Long Fragment Buffer LFB White cap, orange strip label 2 20,000
Short Fragment Buffer SFB White cap, blue strip label 2 20,000
Library Beads LIB Pink 2 1,800
Library Solution LIS White cap, pink label 2 1,800
Sequencing Buffer SB Red 3 1,700
Flow Cell Flush FCF Clear 4 15,500
Flow Cell Tether FCT Purple 1 1,600

Note: The DNA Control Sample (DCS) is a 3.6 kb standard amplicon mapping the 3' end of the Lambda genome.

3. DNA repair and end-prep

Material
  • 1 µg (o 100-200 fmol) de ADN genómico de alto peso molecular
  • DNA Control Sample (DCS) (muestra de control)

Consumibles
  • NEBNext® FFPE DNA Repair Mix (M6630), del Companion Module v2 (NEB, E7672S o E7672L) de NEBNext®
  • NEBNext® Ultra II End Prep Enzyme Mix (E7646), del Companion Module v2 (NEB, E7672S o E7672L) de NEBNext®
  • NEBNext® FFPE DNA Repair Buffer v2 (E7363), del Companion Module v2 (NEB, E7672S o E7672L) de NEBNext®
  • Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
  • OR 0.2 ml thin-walled PCR tubes
  • Agencourt AMPure XP Beads (Beckman Coulter™, A63881)
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • Etanol al 80 % recién preparado con agua sin nucleasas
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)

Instrumental
  • Magnetic rack suitable for 96-well PCR plates, e.g. DynaMag™-96 Side Skirted Magnet (Thermo Fisher, cat # 12027)
  • OR magnetic separator suitable for 0.2 ml PCR tube strips, e.g. DynaMag™-PCR Magnet (Thermo Fisher, #492025) or DynaMag™-96 Side Magnet (Thermo Fisher, #12331D)
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P10
  • Thermal cycler
  • Microcentrífuga
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • Vortex mixer
  • Cubeta con hielo
  • Pipetting troughs
  • Fluorímetro Qubit (o equivalente para el control de calidad)
CONSEJO

Recomendamos utilizar el módulo de acompañamiento Companion Module v2 para Oxford Nanopore Technologies® Ligation Sequencing (ref. E7672S or E7672L) de NEBNext®, que contiene los reactivos necesarios para utilizar junto al Ligation Sequencing Kit.

La versión anterior, NEBNext® Companion Module para Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S o E7180L) también es compatible, pero el modelo recomendado v2, ofrece una ligadura y adición de dA más eficaces.

CHECKPOINT

Verificar la celda de flujo

Antes de empezar a preparar la biblioteca, recomendamos se verifique la celda de flujo para comprobar que tiene poros suficientes para realizar un buen experimento.

Las instrucciones de comprobación de la celda de flujo están disponibles en el protocolo de MinKNOW.

IMPORTANTE

Optional fragmentation and size selection

By default, the protocol contains no DNA fragmentation step, however in some cases it may be advantageous to fragment your sample. For example, when working with lower amounts of input gDNA (100 ng – 500 ng), fragmentation will increase the number of DNA molecules and therefore increase throughput. Instructions are available in the DNA Fragmentation section of Extraction methods.

Additionally, we offer several options for size-selecting your DNA sample to enrich for long fragments - instructions are available in the Size Selection section of Extraction methods.

Descongelar el reactivo DNA Control Sample (DCS) a temperatura ambiente, centrifugar, mezclar con la pipeta y poner en hielo.

Preparar los reactivos NEB siguiendo las instrucciones del fabricante y poner en hielo.

Para obtener un rendimiento óptimo, NEB recomienda lo siguiente:

  1. Descongelar todos los reactivos en hielo.

  2. Golpear suavemente los tubos de los reactivos con el índice o invertirlos, a fin de mezclarlos bien.
    Nota: No mezclar en vórtex las mezclas FFPE DNA Repair Mix, ni Ultra II End Prep Enzyme Mix.

  3. Centrifugar los tubos antes de abrirlos.

  4. Mezclar en vórtex los tampones FFPE DNA Repair Buffer v2 o FFPE DNA Repair Buffer y Ultra II End Prep Reaction Buffer, a fin de mezclarlos bien.

    Nota: Es posible que los tampones tengan un precipitado blanco. Si ello ocurre, dejar que la mezcla se ponga a temperatura ambiente y mezclar el tampón con la pipeta varias veces para romper el precipitado; a continuación, mezclar rápido en vórtex.

  5. El tampón FFPE DNA Repair Buffer puede tener un matiz amarillo; no importa si está así; se puede utilizar.

Prepare the DNA in nuclease-free water:

  • Transfer 1 μg (or 100-200 fmol) input DNA into a separate well of a 96-well plate or a 0.2 ml PCR tube strip
  • Adjust the volume to 47 μl with nuclease-free water
  • Mix thoroughly by pipetting up and down, or by flicking the tube
  • If necessary, seal and spin down briefly in an appropriate microfuge

To each sample, add the following:

Between each addition, pipette mix 10-20 times.

Reagent Volume
DNA from the previous step 47 µl
DNA CS (optional) 1 µl
NEBNext FFPE DNA Repair Buffer v2 7 µl
NEBNext FFPE DNA Repair Mix 2 µl
Ultra II End-prep Enzyme Mix 3 µl
Total 60 µl

If using the previous version of the NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L):

Between each addition, pipette mix 10-20 times.

Reagent Volume
DNA from the previous step 47 µl
DNA CS (optional) 1 µl
NEBNext FFPE DNA Repair Buffer 3.5 µl
NEBNext FFPE DNA Repair Mix 2 µl
Ultra II End-prep Reaction Buffer 3.5 µl
Ultra II End-prep Enzyme Mix 3 µl
Total 60 µl
CONSEJO

For ease, make a master mix of these reagents prior to adding to the DNA samples:

  • Combine the repair and end-prep reagents in the correct ratio and mix well by gently pipetting the entire volume up and down 10 times (ensure the total volume is enough to accommodate 13 µl being added to each DNA sample, with an excess to allow for pipetting losses).
  • Add 13 µl of the master mix to each DNA sample. This can be done by pre-aliquoting the master mix and transferring 13 µl into each sample tube simultaneously, using a multichannel pipette.

Mix well by gently pipetting the entire volume within each well/tube up and down 10 times, or by flicking the tubes, and spin down.

Seal the plate, or close the tube lids.

Incubar en el termociclador, primero a 20 ºC durante 5 minutos y después a 65 ºC durante 5 minutos más.

IMPORTANTE

AMPure XP bead clean-up

It is recommended that the repaired/end-prepped DNA sample is subjected to the following clean-up with AMPure XP beads. This clean-up can be omitted for simplicity and to reduce library preparation time. However, it has been observed that omission of this clean-up can: reduce subsequent adapter ligation efficiency, increase the prevalence of chimeric reads, and lead to an increase in pores being unavailable for sequencing. If omitting the clean-up step, proceed to the next section.

Resuspend the AMPure XP beads by vortexing and transfer to a pipetting trough. Ensure that the volume transferred is enough for 60 µl to be added to each DNA sample, with an excess to allow for dead volume within the pipetting trough.

IMPORTANTE

Resuspend and transfer the beads to the pipetting trough immediately before use to ensure beads do not settle.

Keep the DNA samples in their original wells/PCR tubes. Add 60 µl of resuspended AMPure XP beads to each sample and mix by pipetting at least 100 µl up and down ten times. Retain any unused beads.

Incubate for 5 minutes at room temperature.

Prepare fresh 80% ethanol in nuclease-free water and pour into a pipetting trough. Allow enough for 500 µl per sample, with an excess to allow for dead volume within the pipetting trough. After the bead washing steps, discard any unused ethanol.

Pellet the beads on a magnet for at least 2 minutes, or until the supernatant is clear. Keep the plate/tube strip on the magnet and pipette off the supernatant.

Keeping the plate/tube strip on the magnet, wash each pellet of beads with 200 µl of the freshly-prepared 80% ethanol without disturbing the pellets. Remove the 80% ethanol using a pipette and discard.

Repetir el paso anterior.

Seal the plate, or close the tube lids. Spin down and place the plate/tube strip back on the magnet. Pipette off any residual ethanol.

Pour nuclease-free water into a pipetting trough. Allow enough for 61 µl per sample, with an excess to allow for dead volume within the pipetting trough.

Remove the plate/tube strip from the magnetic rack and resuspend each pellet in 61 µl nuclease-free water from the pipetting trough. Pipette the entire volume up and down ten times).

Seal the plate or close the tube lids, and incubate for 2 minutes at room temperature.

Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.

Remove and retain 61 µl of each eluate in a separate, clean well/tube within a 96-well PCR plate or PCR tube strip. Dispose of the pelleted beads.

CHECKPOINT

Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.

FIN DEL PROCESO

Una vez el ADN está reparado y con los extremos preparados, se puede proceder a la ligación del adaptador. En este punto, también se puede guardar la muestra a 4 ⁰C hasta el día siguiente.

4. Adapter ligation and clean-up

Material
  • Ligation Adapter (LA) (adaptador de ligación)
  • Ligation Buffer (LNB) (tampón de ligación) del kit Ligation Sequencing Kit
  • Long Fragment Buffer (LFB) (tampón para fragmentos largos)
  • Short Fragment Buffer (SFB) (tampón para fragmentos cortos)
  • Elution Buffer (EB) (tampón de elución) del kit de Oxford Nanopore

Consumibles
  • Salt-T4® DNA Ligase (NEB, M0467)
  • Agencourt AMPure XP Beads (Beckman Coulter™, A63881)
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • Qubit dsDNA HS Assay Kit (Invitrogen Q32851) (kit de ensayo ADNbc alta sensibilidad)

Instrumental
  • Magnetic rack suitable for 96-well PCR plates, e.g. DynaMag™-96 Side Skirted Magnet (Thermo Fisher, cat # 12027)
  • OR magnetic separator suitable for 0.2 ml PCR tube strips, e.g. DynaMag™-PCR Magnet (Thermo Fisher, #492025) or DynaMag™-96 Side Magnet (Thermo Fisher, #12331D)
  • Microcentrífuga
  • Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
  • Mezclador vórtex
  • Multichannel pipettes suitable for dispensing 2–20 μl and 20–200 μl, and tips
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
  • Pipetting troughs
  • Fluorímetro Qubit (o equivalente para el control de calidad)
CONSEJO

Recomendamos utilizar Salt-T4® DNA Ligase (NEB, M0467).

La ligasa Salt-T4® DNA Ligase (NEB, M0467) puede adquirirse por separado o como parte del NEBNext® Companion Module v2 para Oxford Nanopore Technologies® Ligation Sequencing (ref. E7672S or E7672L).

La ligasa Quick T4 DNA Ligase (NEB, E6057), disponible en la versión anterior —NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (NEB, E7180S or E7180L)— también es compatible, pero los nuevos reactivos recomendados ofrecen mayor eficacia y ligación.

IMPORTANTE

Aunque la ligasa recomendada de otros fabricantes se suministra con su propio tampón, la eficiencia del adaptador, Ligation Adapter (LA), es mayor cuando se usa el tampón Ligation Buffer (LNB) suministrado en el kit Ligation Sequencing Kit.

Centrifugar los viales Ligation Adapter (LA) y Salt-T4® DNA Ligase y poner en hielo.

Descongelar el vial Ligation Buffer (LNB) a temperatura ambiente, centrifugar y mezclar con la pipeta. Debido a su viscosidad, la agitación en vórtex de este tampón es ineficaz. Tras descongelar y mezclar, colocar en hielo inmediatamente.

Descongelar el vial Elution Buffer (EB) a temperatura ambiente, agitar en vórtex, centrifugar y colocar en hielo.

IMPORTANTE

La fase de lavados tras la ligación de los adaptadores está diseñada para enriquecer los fragmentos de ADN de >3 kb o para purificar todos los fragmentos por igual, según el tampón que se utilice -Long Fragment Buffer (LFB) o Short Fragment Buffer (SFB).

  • Para enriquecer fragmentos de ADN de 3 kb o mayores, utilizar el tampón para fragmentos largos, Long Fragment Buffer (LFB).

  • Para conservar fragmentos de ADN de todos los tamaños, utilizar el tampón para fragmentos cortos, Short Fragment Buffer (SFB).

Descongelar el vial Long Fragment Buffer (LFB) o Short Fragment Buffer (SFB) a temperatura ambiente, agitar en vórtex, centrifugar y colocar en hielo.

CONSEJO

Once Short Fragment Buffer (SFB), Long Fragment Buffer (LFB) and Elution Buffer (EB) are thawed, they can be aliquoted and stored for up to one month at 4°C.

For each sample, combine the following reagents:

Between each addition, pipette mix 10-20 times.

Reagent Volume
DNA sample from the previous step 60 µl
Ligation Adapter (LA) 5 µl
Ligation Buffer (LNB) 25 µl
Salt-T4® DNA Ligase 10 µl
Total 100 µl
CONSEJO

For ease, you can pre-aliquot the reagents separately into empty PCR tubes, from which the reagents are transferred to the DNA samples using a multichannel pipette.

Ensure excess volumes of the reagents are present in these tubes. Leftover reagent should be recovered. For example, for twelve separate DNA samples, aliquot:

Reagent Volume
Ligation Buffer (LNB) 30 µl into each of 12 clean PCR tubes
Salt-T4® DNA Ligase 12 µl into each of 12 clean PCR tubes
Ligation Adapter (LA) 6 µl into each of 12 clean PCR tubes

Alternatively, you can make a master mix of these reagents (allowing up to a 20% excess of each reagent), and add 40 μl of this to each DNA sample. However, ligation efficiency may be compromised if the master mix is not used within 10 minutes.

Mix well by gently pipetting the entire volume within each well/tube up and down 10 times.

Incubar la reacción durante 10 minutos a temperatura ambiente.

Resuspend the AMPure XP beads by vortexing and transfer to a pipetting trough. Ensure that the volume transferred is enough for 60 µl to be added to each DNA sample, with an excess to allow for dead volume within the pipetting trough.

IMPORTANTE

Resuspend and transfer the beads to the pipetting trough immediately before use to ensure beads do not settle.

Add 40 µl of resuspended AMPure XP beads to each sample and mix by pipetting the entire combined volume up and down 10 times.

Incubate for 5 minutes at room temperature.

Add sufficient Long Fragment Buffer (LFB) or Short Fragment Buffer (SFB) to a pipetting trough. Allow enough for 400 µl per sample, with an excess to allow for dead volume within the pipetting trough. Retain any unused reagent after the wash steps.

Pellet the beads on a magnet for at least 2 minutes, or until the supernatant is clear. Keep the plate/tube strip on the magnet and pipette off the supernatant.

Remove the plate/tube strip from the magnetic rack and wash each pellet of beads by adding either 200 μl Long Fragment Buffer (LFB) or Short Fragment Buffer (SFB). Resuspend each pellet thoroughly by pipetting the entire volume of buffer up and down ten times. Fully resuspending the beads at this step ensures optimal kit performance. Return the plate/tube strip to the magnetic rack and allow the beads to pellet until the supernatant is clear. Remove the supernatant using a pipette and discard.

IMPORTANTE

It is essential that beads are resuspended fully and not simply moved around the tubes through use of the magnet.

Repetir el paso anterior.

Seal the plate, or close the tube lids. Spin down and place the plate/tube strip back on the magnet. Pipette off any residual supernatant.

Add sufficient Elution Buffer (EB) to a pipetting trough. Allow enough for 15 µl per sample, with an excess to allow for dead volume within the pipetting trough. Retain any unused Elution Buffer (EB) after the elution step.

Remove the plate/tube strip from the magnetic rack and resuspend each pellet in 15 µl Elution Buffer (EB) from the pipetting trough, pipetting the entire volume up and down 10 times.

CONSEJO

Ensure the beads are fully resuspended. Brief centrifugation can be used to help to draw liquid droplets and beads to the bottom of the wells/tubes during and after resuspension.

Seal the plate (or close the tube lids), and incubate for 10 minutes at 37°C in a thermal cycler. Any heated lid used should be limited to 50°C.

Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.

Remove and retain 15 µl of each eluate in a separate, clean well/tube within a 96-well PCR plate or PCR tube strip. Dispose of the pelleted beads.

CHECKPOINT

Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.

Según el tamaño de los fragmentos de la biblioteca de ADN, prepare la biblioteca final en 12 µl de Elution Buffer (EB).

Longitud de fragmentos Cantidad a cargar en la celda de flujo
Muy cortos (<1 kb) 100 fmol
Cortos (1-10 kb) 35–50 fmol
Largos (>10 kb) 300 ng

Nota: Si el producto obtenido en la biblioteca está por debajo de la cantidad de muestra inicial recomendada, cargue la biblioteca entera.

Si es necesario, recomendamos utilizar una calculadora de masa a mol, como la calculadora de NEB.

FIN DEL PROCESO

La biblioteca preparada se usará para cargar la celda de flujo. Conservar la biblioteca en hielo o a 4 °C hasta el momento de cargar.

CONSEJO

Recomendaciones de guardado de la biblioteca

Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.

5. Cebado y carga de la celda de flujo MinION/GridION

Material
  • Flow Cell Flush (FCF)
  • Flow Cell Tether (FCT) (anclaje de celda de flujo)
  • Library Solution (LIS)
  • Library Beads (LIB) (microesferas de carga de la biblioteca)
  • Sequencing Buffer (SB)

Consumibles
  • Celda de flujo MinION/GridION
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Agua sin nucleasas (p. ej., ThermoFisher AM9937)
  • (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

Instrumental
  • Dispositivo MinION o GridION
  • Pantalla protectora celdas de flujo MinION/GridION
  • Pipeta y puntas P1000
  • Pipeta y puntas P100
  • Pipeta y puntas P20
  • Pipeta y puntas P10
IMPORTANTE

Nótese, este kit es compatible solo con las celdas de flujo R10.4.1 (FLO-MIN114).

CONSEJO

Cebado y carga de la celda de flujo

Se recomienda a los nuevos usuarios que miren el vídeo Priming and loading your flow cell antes de realizar su primer experimento.

Descongelar los viales Sequencing Buffer (SB), Library Beads (LIB) o Library Solution (LIS), -si se requiere-, y un tubo de Flow Cell Flush (FCF) a temperatura ambiente. Agitar en vórtex, centrifugar y colocar en hielo.

IMPORTANTE

Para obtener un rendimiento de secuenciación óptimo y mejorar el rendimiento de las celdas de flujo MinION R10.4.1 (FLO-MIN114), recomendamos añadir seroalbúmina bovina (BSA), en una concentración total de 0,2 mg/ml, a la mezcla de cebado de la celda de flujo.

Nota: No se aconseja utilizar ningún otro tipo de albúmina (p. ej., seroalbúmina humana recombinante).

Para preparar la mezcla de cebado con seroalbúmina bovina, mezclar Flow Cell Flush (FCF) y Flow Cell Tether (FCT) como se indica a continuación. Mezclar con la pipeta a temperatura ambiente.

Nota: Hemos cambiando el formato de algunos de los viales de nuestros kits, de tubos monouso a botellas de mayor cantidad.

Formato en tubos monouso En el tubo de Flow Cell Flush (FCF), añadir directamente 5 µl de seroalbúmina bovina (BSA), a una concentración de 50 mg/ml y 30 µl de Flow Cell Tether (FCT).

Formato en botella: En un tubo proporcionado a la cantidad de celdas de flujo que se vayan a utilizar, mezclar los siguientes reactivos:

Reactivo Volumen por celda de flujo
Flow Cell Flush (FCF) 1 170 µl
Bovine Serum Albumin (BSA) a una concentración de 50 mg/ml 5 µl
Flow Cell Tether (FCT) 30 µl
Volumen total 1 205 µl

Abrir la tapa del dispositivo MinION o GridION y deslizar la celda de flujo debajo del clip. Presionar la celda de flujo con firmeza para asegurar un contacto eléctrico y térmico adecuados.

Flow Cell Loading Diagrams Step 1a

Paso 1b- Diagramas carga de la celda de flujo ES

MEDIDA OPCIONAL

Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.

Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.

Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.

Abrir el puerto de cebado de la celda de flujo, deslizando la tapa en el sentido de las agujas del reloj.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de cebado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

Cargar 800 μl de solución en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.

Flow Cell Loading Diagrams Step 04 V5 SPANISH

Mezclar con la pipeta, minuciosamente, el contenido del vial Library Beads (LIB).

IMPORTANTE

Este vial contiene microesferas en suspensión. Las microesferas precipitan muy rápido; por eso, es fundamental mezclarlas justo antes de usar.

En la mayoría de experimentos de secuenciación, se recomienda usar Library Beads (LIB) . El reactivo Library Solution (LIS) está indicado para bibliotecas de ADN más viscosas.

En un tubo nuevo de 1,5 ml Eppendorf DNA LoBind, preparar la biblioteca de la siguiente manera:

Reactivo Volumen por celda de flujo
Sequencing Buffer (SB) 37,5 µl
Library Beads (LIB) mezcladas justo antes de usar, o Library Solution (LIS), si se requiere 25,5 µl
Biblioteca de ADN 12 µl
Total 75 µl

Completar el cebado de la celda de flujo:

  1. Levantar suavemente la tapa del puerto de carga SpotON.
  2. Cargar 200 µl de solución en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5 SPANISH 2

Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.

Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.

Flow Cell Loading Diagram Step 07 V5 SPANISH

Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.

Step 8 update - SPANISH

Flow Cell Loading Diagrams Step 9 SPANISH

IMPORTANTE

Para obtener resultados de secuenciación óptimos, coloque la pantalla protectora sobre la celda de flujo justo después de cargar la biblioteca.

Recomendamos colocar la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.

Colocar la pantalla protectora de la siguiente manera:

  1. Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.

  2. Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.

J2264 - Light shield animation Flow Cell FAW optimised. SPANISH

ATENCIÓN

La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.

FIN DEL PROCESO

Cerrar la tapa del dispositivo y configurar un experimento de secuenciación en MinKNOW.

6. Adquisición de datos e identificación de bases

Cómo empezar a secuenciar

Una vez la celda de flujo esté cargada, el experimento se pone en marcha desde MinKNOW, el programa de secuenciación que controla el dispositivo, la adquisición de datos y la identificación de bases en tiempo real. Encontrará intrucciones de uso más detalladas en el protocolo de MinKNOW.

Es posible utilizar y configurar MinKNOW para secuenciar de diferentes maneras:

  • En un ordenador conectado a un dispositivo de secuenciación, ya sea directamente o en remoto.
  • Directamente desde un dispositivo de secuenciación GridION, MinION Mk1C o PromethION 24/48.

Encontrará más información sobre el uso de MinKNOW en los manuales de usuario de los dispositivos:


Cómo empezar un experimento de secuenciación en MinKNOW:

1. Ir a la página de inicio y pulsar "Iniciar secuenciación".

2. Introducir los datos del experimento, como el nombre, la posición de la celda de flujo y el identificador de muestra.

3. En la pestaña Kit, seleccionar el kit de secuenciación utilizado durante la preparación de la biblioteca.

4. Configurar los parámetros de secuenciación y salida del experimento o dejar la configuración por defecto en la pestaña Configuración del experimento.

Nota: Si la identificación de bases estaba desactivada durante la configuración de un experimento, se puede activar en MinKNOW en la fase posejecución. Para más información, consulte el protocolo de MinKNOW.

5. En la página de Inicio, pulsar Iniciar la secuenciación.

Identificación de bases duplex

La química del kit 14 ha mejorado la identificación de bases duplex, la cual requiere, tras realizar la identificación de bases simplex en MinKNOW, volver a identificar las bases en el programa Dorado con herramientas de identificación de bases duplex.

Para obtener información detallada sobre la configuración de un experimento de secuenciación, tanto para la identificación de bases simplex, como para la duplex, consultar la hoja informativa Kit 14 sequencing and duplex basecalling.

Nota: Mientras Dorado se esté ejecutando, recomendamos parar otros procesos de identificación de bases, para potenciar la memoria disponible en el programa. Esta acción se puede detener y reiniciar, cuando Dorado haya terminado, a través de la interfaz gráfica de MinKNOW.

Análisis de datos

Una vez la secuenciación ha finalizado, es posible reutilizar o devolver la celda de flujo, como se describe en la sección sobre Reutilización o retorno de celdas de flujo.

Tras secuenciar e identificar las bases, es posible analizar los datos. Si desea más información sobre las opciones de identificación de bases y de análisis posterior, consulte el documento Data Analysis.

En la sección Análisis posterior, se describen otras opciones para analizar los datos.

7. Reutilización y devolución de celdas de flujo

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a entre 2 °C y 8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

CONSEJO

Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.

Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí puede encontrar las instrucciones para devolver celdas de flujo.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

8. Análisis

Análisis posterior a la identificación de bases

Existen varias opciones para completar el análisis de los datos de identificación de bases:

1. Procesos de trabajo en EPI2ME

Para realizar un análisis de datos exhaustivo, Oxford Nanopore Technologies ofrece una serie de tutoriales y procesos de trabajo de bioinformática, disponibles en EPI2ME Labs, situados en la sección EPI2ME de la comunidad Nanopore. La plataforma proporciona un espacio donde los procesos de trabajo que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.

2. Herramientas de análisis

El departamento de Investigación de Oxford Nanopore Technologies ha creado una serie de herramientas de análisis que están disponibles en el repositorio Oxford Nanopore de GitHub. Las herramientas están diseñadas para usuarios avanzados y contienen instrucciones sobre cómo instalar y ejecutar el programa. Estas herramientas están públicamente disponibles y cuentan con un mantenimiento mínimo.

3. Herramientas de análisis desarrolladas por la comunidad

Si en ninguno de los recursos anteriores se proporciona un método de análisis que responda a las necesidades de investigación requeridas, puede consultar la sección Bioinformatics del centro de recursos. Varios miembros de la comunidad Nanopore han desarrollado sus propias herramientas y cartera de productos en desarrollo para analizar los datos de la secuenciación por nanoporos. La mayoría de ellas está disponible en GitHub. Oxford Nanopore Technologies no desarrolla ni mantiene esas herramientas y no garantiza que sean compatibles con la última configuración de química/software.

9. Problemas durante la extracción de ADN/ARN y la preparación de bibliotecas

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Baja calidad de la muestra

Observación Posible causa Comentarios y acciones recomendadas
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) El método de extracción de ADN no proporciona la pureza necesaria Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Considere realizar un paso adicional de limpieza SPRI.
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.
El ARN tiene una longitud de fragmento más corta de lo esperado El ARN se degradó durante la extracción Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling.

Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas.

Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure

Observación Posible causa Comentarios y acciones recomendadas
Escasa recuperación Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas.

2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza.
Escasa recuperación Los fragmentos de ADN son más cortos de lo esperado Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. SPRI cleanup
Escasa recuperación tras la preparación de extremos El paso de lavado utilizó etanol a <70 % Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto.

10. Problemas durante el experimento de secuenciación

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Menos poros al inicio de la secuenciación que después de verificar la celda de flujo

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo Se introdujo una burbuja de aire en la matriz de nanoporos Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra.
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La celda de flujo no está colocada correctamente Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION).
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Error en el script de MinKNOW

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error en el script"
Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales.

Ocupación de poro por debajo del 40 %

Observación Posible causa Comentarios y acciones recomendadas
Ocupación de poro <40 % No se cargó suficiente cantidad de biblioteca en la celda de flujo Procure cargar la biblioteca al volumen y la concentración adecuados, tal como se indica en el protocolo correspondiente. Cuantificar la biblioteca antes de cargarla y calcular fmoles con herramientas como la calculadora Biomath de Promega, (opción "dsDNA: μg to fmol").
Ocupación de poro próxima a 0 Se utilizó el kit Ligation Sequencing Kit y los adaptadores de secuenciación no se ligaron al ADN En la fase de ligación del adaptador, utilice NEBNext Quick Ligation Module (E6056) y el tampón Ligation Buffer (LNB) de Oxford Nanopore Technologies, suministrado en el kit de secuenciación. Recuerde añadir la cantidad correcta de cada reactivo. Prepare una biblioteca de control con lambda para valorar la integridad de los reactivos de otros fabricantes.
Ocupación de poro próxima a 0 Se utilizó el kit Ligation Sequencing Kit y en la fase de lavado, después de la ligación del adaptador, se utilizó etanol en lugar de Long Fragment Buffer (LFB) o Short Fragment Buffer (SFB). El etanol puede desnaturalizar la proteína motor en los adaptadores de secuenciación. Usar Long Fragment Buffer (LFB) o Short Fragment Buffer (SFB) después de la ligación de los adaptadores.
Ocupación de poro próxima a 0 No hay anclaje en la celda de flujo Los anclajes se añaden durante el cebado de la celda de flujo (Flush Tether (FLT) para los kits 9, 10 y 11, y Flow Cell Tether (FCT) para el kit 14). Asegurarse de añadir un anclaje —Flush Tether (FLT) o Flow Cell Tether (FCT)— al tampón antes del cebado; el tampón utilizado es Flush Buffer (FB) para los kits 9, 10 y 11 y Flow cell Flush (FCF) para el Kit 14.

Longitud de lectura más corta de lo esperado

Observación Posible causa Comentarios y acciones recomendadas
Longitud de lectura más corta de lo esperado Fragmentación no deseada de la muestra de ADN La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca.

1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore.

2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. DNA gel2 En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado.

3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente.

Gran proporción de poros no disponibles

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros)

image2022-3-25 10-43-25 Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles.
Hay contaminantes presentes en la muestra Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones:

1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004)
2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas.

Gran proporción de poros inactivos

Observación Posible causa Comentarios y acciones recomendadas
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) Se han introducido burbujas de aire en la celda de flujo Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell
Gran proporción de poros inactivos/no disponibles Ciertos compuestos copurificados con ADN Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas.

1. Consulte la página Plant leaf DNA extraction method.
2. Limpiar usando el kit QIAGEN PowerClean Pro.
3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g.
Gran proporción de poros inactivos/no disponibles Hay contaminantes presentes en la muestra Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes.

Fluctuación de la temperatura

Observación Posible causa Comentarios y acciones recomendadas
Fluctuación de la temperatura La celda de flujo ha perdido contacto con el dispositivo Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica.

Error al intentar alcanzar la temperatura deseada

Observación Posible causa Comentarios y acciones recomendadas
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez transcurrido ese tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo, procure que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Encontrará más información sobre el control de temperatura del MinION en este enlace.

Last updated: 12/12/2024

Document options

GridION