Ligation sequencing amplicons - Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- Home
- Documentation
- Ligation sequencing amplicons - Native Barcoding Kit 96 V14 (SQK-NBD114.96)
MinION: Protocol
Ligation sequencing amplicons - Native Barcoding Kit 96 V14 (SQK-NBD114.96) V NBA_9170_v114_revO_12Dec2024
Barcoding of amplicon libraries
- Requires the Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- Includes no PCR steps
- Using up to 96 barcodes
- Allows analysis of native DNA
- Compatible with R10.4.1 flow cells
For Research Use Only
FOR RESEARCH USE ONLY
Contents
Introduction to the protocol
- 1. Overview of the protocol
- 2. Equipment and consumables
- 3. Requisitos de sistema y programas informáticos
Library preparation
- 4. End-prep
- 5. Native barcode ligation
- 6. Adapter ligation and clean-up
- 7. Priming and loading the SpotON flow cell
Sequencing and data analysis
Troubleshooting
Descripción general
Barcoding of amplicon libraries
- Requires the Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- Includes no PCR steps
- Using up to 96 barcodes
- Allows analysis of native DNA
- Compatible with R10.4.1 flow cells
For Research Use Only
1. Overview of the protocol
Introduction to the Native Barcoding Kit 96 V14 protocol
This protocol describes how to carry out native barcoding of amplicon DNA using the Native Barcoding Kit 96 V14 (SQK-NBD114.96). There are 96 unique barcodes available, allowing the user to pool up to 96 different samples in one sequencing experiment. It is highly recommended that a Lambda control experiment is completed first to become familiar with the technology.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
- Extract your DNA, and check its length, quantity and purity. The quality checks performed during the protocol are essential in ensuring experimental success.
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Prepare your library
You will need to:
- Prepare the DNA ends for adapter attachment
- Ligate Native barcodes supplied in the kit to the DNA ends
- Ligate sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell
Sequencing
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Demultiplex barcoded reads in MinKNOW or the Guppy basecalling, choosing the SQK-NBD114.96 kit option
- Start the EPI2ME software and select a workflow for further analysis (this step is optional)
IMPORTANTE
We do not recommend mixing barcoded libraries with non-barcoded libraries prior to sequencing.
IMPORTANTE
Compatibility of this protocol
This protocol should only be used in combination with:
- Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- R10.4.1 flow cells (FLO-MIN114)
- Flow Cell Wash Kit (EXP-WSH004)
- Sequencing Auxiliary Vials V14 (EXP-AUX003)
- Native Barcoding Expansion V14 (EXP-NBA114)
2. Equipment and consumables
Material
- Native Barcoding Kit 96 V14 (SQK-NBD114.96)
- 200 fmol (130 ng for 1 kb amplicons) DNA per sample to be barcoded
Consumibles
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- NEBNext Ultra II End Repair/dA-tailing Module (NEB E7546) (Módulo de reparación de extremos/Adición de dA)
- NEBNext Quick Ligation Module (NEB E6056) (Módulo de ligación rápida)
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
- Tubos de 1,5 ml Eppendorf DNA LoBind
- 2 ml Eppendorf DNA LoBind tubes
- Agua sin nucleasas (p. ej., ThermoFisher AM9937)
- Etanol al 80 % recién preparado con agua sin nucleasas
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
- (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
Instrumental
- Mezclador Hula (mezclador giratorio suave)
- Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
- Microfuge
- Gradilla magnética
- Mezclador vórtex
- Termociclador
- Multichannel pipette and tips
- Pipeta y puntas P1000
- Pipeta y puntas P200
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- Pipeta y puntas P2
- Cubeta con hielo
- Temporizador
- Centrifuga Eppendorf 5424 (o equivalente)
- Fluorímetro Qubit (o equivalente para el control de calidad)
Equipo opcional
- Nanodrop spectrophotometer
For this protocol, we recommend using 200 fmol (130 ng for 1 kb amplicons) DNA per sample to be barcoded.
Cantidad de muestra inicial de ADN
Cómo realizar un control de calidad del ADN de la muestra inicial
Es importante que la muestra de ADN cumpla con los requisitos de cantidad y calidad. Usar demasiado ADN, poco o de mala calidad (p. ej., que esté muy fragmentado, que contenga ARN o contaminantes químicos), puede afectar a la preparación de la biblioteca.
Para realizar un control de calidad en la muestra de ADN, consulte el protocolo Input DNA/ RNA QC
Contaminantes químicos
Dependiendo de cómo se extraiga el ADN de la muestra cruda, ciertos contaminantes químicos pueden permanecer en el ADN purificado, lo cual afecta la eficacia de la preparación de la biblioteca y la calidad de la secuenciación. Encontrará más información sobre contaminantes en la página Contaminants de la comunidad Nanopore.
Reactivos de otros fabricantes
Oxford Nanopore Technologies ha probado y recomienda el uso de todos los reactivos de otros fabricantes citados en este protocolo. No se han evaluado otras alternativas.
Recomendamos preparar estos reactivos siguiendo las instrucciones del fabricante.
IMPORTANTE
The Native Adapter (NA) used in this kit and protocol is not interchangeable with other sequencing adapters.
Native Barcoding Kit 96 V14 (SQK-NBD114.96) contents
Note: We are in the process of updating our kits with reduced EDTA concentration.
Higher EDTA concentration format:
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (µl) |
---|---|---|---|---|
Native Barcode plate | NB01-96 | - | 3 plates | 8 µl per well |
DNA Control Sample | DCS | Yellow | 3 | 35 |
Native Adapter | NA | Green | 2 | 40 |
Sequencing Buffer | SB | Red | 2 | 700 |
Library Beads | LIB | Pink | 2 | 600 |
Library Solution | LIS | White cap, pink label | 2 | 600 |
Elution Buffer | EB | Black | 1 | 1,500 |
AMPure XP Beads | AXP | Amber | 1 | 6,000 |
Long Fragment Buffer | LFB | Orange | 1 | 7,500 |
Short Fragment Buffer | SFB | Clear | 1 | 7,500 |
EDTA† | EDTA | Clear | 1 | 700 |
Flow Cell Flush | FCF | Blue | 1 | 15,500 |
Flow Cell Tether | FCT | Purple | 2 | 200 |
† Higher concentration of EDTA with a clear cap.
Reduced EDTA concentration format:
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (µl) |
---|---|---|---|---|
Native Barcode plate | NB01-96 | - | 3 plates | 8 µl per well |
DNA Control Sample | DCS | Yellow | 3 | 35 |
Native Adapter | NA | Green | 2 | 40 |
Sequencing Buffer | SB | Red | 2 | 700 |
Library Beads | LIB | Pink | 2 | 600 |
Library Solution | LIS | White cap, pink label | 2 | 600 |
Elution Buffer | EB | Black | 1 | 1,500 |
AMPure XP Beads | AXP | Clear cap, light teal | 1 | 6,000 |
Long Fragment Buffer | LFB | Clear cap, orange label | 1 | 7,500 |
Short Fragment Buffer | SFB | Clear cap, dark blue label | 1 | 7,500 |
EDTA‡ | EDTA | Blue | 1 | 700 |
Flow Cell Flush | FCF | Clear cap, light blue label | 1 | 15,500 |
Flow Cell Tether | FCT | Purple | 2 | 200 |
‡ Reduced concentration of EDTA with a blue cap.
Note: This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.
The barcodes are orientated in columns in the barcode plate.
Note: The DNA Control Sample (DCS) is a 3.6 kb standard amplicon mapping the 3' end of the Lambda genome.
To maximise the use of the Native Barcoding Kits, the Native Barcode Auxiliary V14 (EXP-NBA114) and the Sequencing Auxiliary Vials V14 (EXP-AUX003) expansion packs are available.
These expansions provide extra library preparation and flow cell priming reagents to allow users to utilise any unused barcodes for those running in smaller subsets.
Both expansion packs used together will provide enough reagents for 12 reactions. For customers requiring extra EDTA to maximise the use of barcodes, we recommend using 0.25 M EDTA and adding 4 µl for library preps using the SQK-NBD114.24 kit and 2 µl for preps using the SQK-NBD114.96 kit.
Native Barcode Auxiliary V14 (EXP-NBA114) contents:
Note: This Product contains AMPure XP Reagent manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.
Sequencing Auxiliary Vials V14 (EXP-AUX003) contents:
Native barcode sequences
Component | Forward sequence | Reverse sequence |
---|---|---|
NB01 | CACAAAGACACCGACAACTTTCTT | AAGAAAGTTGTCGGTGTCTTTGTG |
NB02 | ACAGACGACTACAAACGGAATCGA | TCGATTCCGTTTGTAGTCGTCTGT |
NB03 | CCTGGTAACTGGGACACAAGACTC | GAGTCTTGTGTCCCAGTTACCAGG |
NB04 | TAGGGAAACACGATAGAATCCGAA | TTCGGATTCTATCGTGTTTCCCTA |
NB05 | AAGGTTACACAAACCCTGGACAAG | CTTGTCCAGGGTTTGTGTAACCTT |
NB06 | GACTACTTTCTGCCTTTGCGAGAA | TTCTCGCAAAGGCAGAAAGTAGTC |
NB07 | AAGGATTCATTCCCACGGTAACAC | GTGTTACCGTGGGAATGAATCCTT |
NB08 | ACGTAACTTGGTTTGTTCCCTGAA | TTCAGGGAACAAACCAAGTTACGT |
NB09 | AACCAAGACTCGCTGTGCCTAGTT | AACTAGGCACAGCGAGTCTTGGTT |
NB10 | GAGAGGACAAAGGTTTCAACGCTT | AAGCGTTGAAACCTTTGTCCTCTC |
NB11 | TCCATTCCCTCCGATAGATGAAAC | GTTTCATCTATCGGAGGGAATGGA |
NB12 | TCCGATTCTGCTTCTTTCTACCTG | CAGGTAGAAAGAAGCAGAATCGGA |
NB13 | AGAACGACTTCCATACTCGTGTGA | TCACACGAGTATGGAAGTCGTTCT |
NB14 | AACGAGTCTCTTGGGACCCATAGA | TCTATGGGTCCCAAGAGACTCGTT |
NB15 | AGGTCTACCTCGCTAACACCACTG | CAGTGGTGTTAGCGAGGTAGACCT |
NB16 | CGTCAACTGACAGTGGTTCGTACT | AGTACGAACCACTGTCAGTTGACG |
NB17 | ACCCTCCAGGAAAGTACCTCTGAT | ATCAGAGGTACTTTCCTGGAGGGT |
NB18 | CCAAACCCAACAACCTAGATAGGC | GCCTATCTAGGTTGTTGGGTTTGG |
NB19 | GTTCCTCGTGCAGTGTCAAGAGAT | ATCTCTTGACACTGCACGAGGAAC |
NB20 | TTGCGTCCTGTTACGAGAACTCAT | ATGAGTTCTCGTAACAGGACGCAA |
NB21 | GAGCCTCTCATTGTCCGTTCTCTA | TAGAGAACGGACAATGAGAGGCTC |
NB22 | ACCACTGCCATGTATCAAAGTACG | CGTACTTTGATACATGGCAGTGGT |
NB23 | CTTACTACCCAGTGAACCTCCTCG | CGAGGAGGTTCACTGGGTAGTAAG |
NB24 | GCATAGTTCTGCATGATGGGTTAG | CTAACCCATCATGCAGAACTATGC |
NB25 | GTAAGTTGGGTATGCAACGCAATG | CATTGCGTTGCATACCCAACTTAC |
NB26 | CATACAGCGACTACGCATTCTCAT | ATGAGAATGCGTAGTCGCTGTATG |
NB27 | CGACGGTTAGATTCACCTCTTACA | TGTAAGAGGTGAATCTAACCGTCG |
NB28 | TGAAACCTAAGAAGGCACCGTATC | GATACGGTGCCTTCTTAGGTTTCA |
NB29 | CTAGACACCTTGGGTTGACAGACC | GGTCTGTCAACCCAAGGTGTCTAG |
NB30 | TCAGTGAGGATCTACTTCGACCCA | TGGGTCGAAGTAGATCCTCACTGA |
NB31 | TGCGTACAGCAATCAGTTACATTG | CAATGTAACTGATTGCTGTACGCA |
NB32 | CCAGTAGAAGTCCGACAACGTCAT | ATGACGTTGTCGGACTTCTACTGG |
NB33 | CAGACTTGGTACGGTTGGGTAACT | AGTTACCCAACCGTACCAAGTCTG |
NB34 | GGACGAAGAACTCAAGTCAAAGGC | GCCTTTGACTTGAGTTCTTCGTCC |
NB35 | CTACTTACGAAGCTGAGGGACTGC | GCAGTCCCTCAGCTTCGTAAGTAG |
NB36 | ATGTCCCAGTTAGAGGAGGAAACA | TGTTTCCTCCTCTAACTGGGACAT |
NB37 | GCTTGCGATTGATGCTTAGTATCA | TGATACTAAGCATCAATCGCAAGC |
NB38 | ACCACAGGAGGACGATACAGAGAA | TTCTCTGTATCGTCCTCCTGTGGT |
NB39 | CCACAGTGTCAACTAGAGCCTCTC | GAGAGGCTCTAGTTGACACTGTGG |
NB40 | TAGTTTGGATGACCAAGGATAGCC | GGCTATCCTTGGTCATCCAAACTA |
NB41 | GGAGTTCGTCCAGAGAAGTACACG | CGTGTACTTCTCTGGACGAACTCC |
NB42 | CTACGTGTAAGGCATACCTGCCAG | CTGGCAGGTATGCCTTACACGTAG |
NB43 | CTTTCGTTGTTGACTCGACGGTAG | CTACCGTCGAGTCAACAACGAAAG |
NB44 | AGTAGAAAGGGTTCCTTCCCACTC | GAGTGGGAAGGAACCCTTTCTACT |
NB45 | GATCCAACAGAGATGCCTTCAGTG | CACTGAAGGCATCTCTGTTGGATC |
NB46 | GCTGTGTTCCACTTCATTCTCCTG | CAGGAGAATGAAGTGGAACACAGC |
NB47 | GTGCAACTTTCCCACAGGTAGTTC | GAACTACCTGTGGGAAAGTTGCAC |
NB48 | CATCTGGAACGTGGTACACCTGTA | TACAGGTGTACCACGTTCCAGATG |
NB49 | ACTGGTGCAGCTTTGAACATCTAG | CTAGATGTTCAAAGCTGCACCAGT |
NB50 | ATGGACTTTGGTAACTTCCTGCGT | ACGCAGGAAGTTACCAAAGTCCAT |
NB51 | GTTGAATGAGCCTACTGGGTCCTC | GAGGACCCAGTAGGCTCATTCAAC |
NB52 | TGAGAGACAAGATTGTTCGTGGAC | GTCCACGAACAATCTTGTCTCTCA |
NB53 | AGATTCAGACCGTCTCATGCAAAG | CTTTGCATGAGACGGTCTGAATCT |
NB54 | CAAGAGCTTTGACTAAGGAGCATG | CATGCTCCTTAGTCAAAGCTCTTG |
NB55 | TGGAAGATGAGACCCTGATCTACG | CGTAGATCAGGGTCTCATCTTCCA |
NB56 | TCACTACTCAACAGGTGGCATGAA | TTCATGCCACCTGTTGAGTAGTGA |
NB57 | GCTAGGTCAATCTCCTTCGGAAGT | ACTTCCGAAGGAGATTGACCTAGC |
NB58 | CAGGTTACTCCTCCGTGAGTCTGA | TCAGACTCACGGAGGAGTAACCTG |
NB59 | TCAATCAAGAAGGGAAAGCAAGGT | ACCTTGCTTTCCCTTCTTGATTGA |
NB60 | CATGTTCAACCAAGGCTTCTATGG | CCATAGAAGCCTTGGTTGAACATG |
NB61 | AGAGGGTACTATGTGCCTCAGCAC | GTGCTGAGGCACATAGTACCCTCT |
NB62 | CACCCACACTTACTTCAGGACGTA | TACGTCCTGAAGTAAGTGTGGGTG |
NB63 | TTCTGAAGTTCCTGGGTCTTGAAC | GTTCAAGACCCAGGAACTTCAGAA |
NB64 | GACAGACACCGTTCATCGACTTTC | GAAAGTCGATGAACGGTGTCTGTC |
NB65 | TTCTCAGTCTTCCTCCAGACAAGG | CCTTGTCTGGAGGAAGACTGAGAA |
NB66 | CCGATCCTTGTGGCTTCTAACTTC | GAAGTTAGAAGCCACAAGGATCGG |
NB67 | GTTTGTCATACTCGTGTGCTCACC | GGTGAGCACACGAGTATGACAAAC |
NB68 | GAATCTAAGCAAACACGAAGGTGG | CCACCTTCGTGTTTGCTTAGATTC |
NB69 | TACAGTCCGAGCCTCATGTGATCT | AGATCACATGAGGCTCGGACTGTA |
NB70 | ACCGAGATCCTACGAATGGAGTGT | ACACTCCATTCGTAGGATCTCGGT |
NB71 | CCTGGGAGCATCAGGTAGTAACAG | CTGTTACTACCTGATGCTCCCAGG |
NB72 | TAGCTGACTGTCTTCCATACCGAC | GTCGGTATGGAAGACAGTCAGCTA |
NB73 | AAGAAACAGGATGACAGAACCCTC | GAGGGTTCTGTCATCCTGTTTCTT |
NB74 | TACAAGCATCCCAACACTTCCACT | AGTGGAAGTGTTGGGATGCTTGTA |
NB75 | GACCATTGTGATGAACCCTGTTGT | ACAACAGGGTTCATCACAATGGTC |
NB76 | ATGCTTGTTACATCAACCCTGGAC | GTCCAGGGTTGATGTAACAAGCAT |
NB77 | CGACCTGTTTCTCAGGGATACAAC | GTTGTATCCCTGAGAAACAGGTCG |
NB78 | AACAACCGAACCTTTGAATCAGAA | TTCTGATTCAAAGGTTCGGTTGTT |
NB79 | TCTCGGAGATAGTTCTCACTGCTG | CAGCAGTGAGAACTATCTCCGAGA |
NB80 | CGGATGAACATAGGATAGCGATTC | GAATCGCTATCCTATGTTCATCCG |
NB81 | CCTCATCTTGTGAAGTTGTTTCGG | CCGAAACAACTTCACAAGATGAGG |
NB82 | ACGGTATGTCGAGTTCCAGGACTA | TAGTCCTGGAACTCGACATACCGT |
NB83 | TGGCTTGATCTAGGTAAGGTCGAA | TTCGACCTTACCTAGATCAAGCCA |
NB84 | GTAGTGGACCTAGAACCTGTGCCA | TGGCACAGGTTCTAGGTCCACTAC |
NB85 | AACGGAGGAGTTAGTTGGATGATC | GATCATCCAACTAACTCCTCCGTT |
NB86 | AGGTGATCCCAACAAGCGTAAGTA | TACTTACGCTTGTTGGGATCACCT |
NB87 | TACATGCTCCTGTTGTTAGGGAGG | CCTCCCTAACAACAGGAGCATGTA |
NB88 | TCTTCTACTACCGATCCGAAGCAG | CTGCTTCGGATCGGTAGTAGAAGA |
NB89 | ACAGCATCAATGTTTGGCTAGTTG | CAACTAGCCAAACATTGATGCTGT |
NB90 | GATGTAGAGGGTACGGTTTGAGGC | GCCTCAAACCGTACCCTCTACATC |
NB91 | GGCTCCATAGGAACTCACGCTACT | AGTAGCGTGAGTTCCTATGGAGCC |
NB92 | TTGTGAGTGGAAAGATACAGGACC | GGTCCTGTATCTTTCCACTCACAA |
NB93 | AGTTTCCATCACTTCAGACTTGGG | CCCAAGTCTGAAGTGATGGAAACT |
NB94 | GATTGTCCTCAAACTGCCACCTAC | GTAGGTGGCAGTTTGAGGACAATC |
NB95 | CCTGTCTGGAAGAAGAATGGACTT | AAGTCCATTCTTCTTCCAGACAGG |
NB96 | CTGAACGGTCATAGAGTCCACCAT | ATGGTGGACTCTATGACCGTTCAG |
3. Requisitos de sistema y programas informáticos
Requisitos informáticos para el MinION Mk1B
Para secuenciar con el MinION Mk1B es necesario tener un ordenador o portátil de alto rendimiento, que pueda soportar la velocidad de adquisición de datos. Encontrará más información en el documento MinION Mk1B IT Requirements.
Requisitos informáticos para el MinION Mk1C
El MinION Mk1C contiene ordenador y pantalla integrados, lo que elimina la dependencia de cualquier accesorio para generar y analizar datos de nanoporos. Encontrará más información en el documento MinION Mk1C IT Requirements.
MinION Mk1D IT requirements
Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.
Programas informáticos para secuenciar por nanoporos
MinKNOW
El programa MinKNOW controla el dispositivo de secuenciación por nanoporos, genera los datos de secuenciación e identifica las bases en tiempo real. Se utiliza para secuenciar y demultiplexar las muestras, cuando estas contienen códigos.
Para ponerlo en funcionamiento, consulte el protocolo MinKNOW en la sección correspondiente.
EPI2ME (opcional)
La plataforma en la nube EPI2ME realiza análisis adicionales de las bases identificadas, por ejemplo la alineación con el genoma lambda, identificación de especies mediante código de barras (barcoding) o clasificación taxonómica. EPI2ME es necesario solo si tras la identificación de bases se necesitan análisis adicionales.
Para crear una cuenta en EPI2ME e instalar el agente de escritorio, consulte el protocolo de la plataforma.
Verificar la celda de flujo
Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en las primeras 12 semanas desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.
Celda de flujo | Número mínimo de poros activos cubierto por la garantía |
---|---|
Flongle | 50 |
MinION/GridION | 800 |
PromethION | 5000 |
4. End-prep
Material
- 200 fmol (130 ng for 1 kb amplicons) DNA per sample to be barcoded
- DNA Control Sample (DCS) (muestra de control)
Consumibles
- NEBNext Ultra II End repair/dA-tailing Module (NEB E7546)
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
- Agua sin nucleasas (p. ej., ThermoFisher AM9937)
Instrumental
- Pipeta y puntas P1000
- Pipeta y puntas P200
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- P2 pipette and tips
- Multichannel pipette and tips
- Thermal cycler
- Microplate centrifuge, e.g. Fisherbrand™ Mini Plate Spinner Centrifuge (Fisher Scientific, 11766427)
- Cubeta con hielo
Thaw the DNA Control Sample (DCS) at room temperature, mix by vortexing, and place on ice.
Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:
For optimal performance, NEB recommend the following:
Thaw all reagents on ice.
Ensure the reagents are well mixed.
Note: Do not vortex the Ultra II End Prep Enzyme Mix.Always spin down tubes before opening for the first time each day.
The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.
IMPORTANTE
Do not vortex the NEBNext Ultra II End Prep Enzyme Mix.
IMPORTANTE
It is important that the NEBNext Ultra II End Prep Reaction Buffer is mixed well by vortexing.
Check for any visible precipitate; vortexing for at least 30 seconds may be required to solubilise all precipitate.
Dilute your DNA Control Sample (DCS) by adding 105 µl Elution Buffer (EB) directly to one DCS tube. Mix gently by pipetting and spin down.
One tube of diluted DNA Control Sample (DCS) is enough for 140 samples. Excess can be stored at -20°C in the freezer.
CONSEJO
Se recomienda usar DNA Control Sample (DCS) en la preparación de la biblioteca para localizar y solucionar problemas. De todos modos, se puede omitir este paso y compensar el 1 µl extra con la muestra de ADN.
In a clean 96-well plate, aliquot 200 fmol (130 ng for 1 kb amplicons) of DNA per sample.
Make up each sample to 11.5 µl using nuclease-free water. Mix gently by pipetting and spin down.
Combine the following components per well:
Between each addition, pipette mix 10-20 times.
Reagents | Volume |
---|---|
200 fmol amplicon DNA | 11.5 µl |
Diluted DNA Control Sample (DCS) | 1 µl |
Ultra II End-prep Reaction Buffer | 1.75 µl |
Ultra II End-prep Enzyme Mix | 0.75 µl |
Total | 15 µl |
CONSEJO
We recommend making up a master mix of the end-prep reagents for the total number of samples and adding 2.5 µl to each well.
Ensure the components are thoroughly mixed by pipetting and spin down briefly.
Incubar en el termociclador, primero a 20 ºC durante 5 minutos y después a 65 ºC durante 5 minutos más.
FIN DEL PROCESO
Take forward the end-prepped DNA into the native barcode ligation step.
If users want to pause the library preparation here, we recommend cleaning up your sample with 1X AMPure XP Beads (AXP) and eluting in nuclease-free water before storing at 4°C.
Please note, extra AMPure XP Beads (AXP) will be required for this optional step.
5. Native barcode ligation
Material
- Native Barcodes (NB01-NB96)
- AMPure XP Beads (AXP) (microesferas magnéticas)
- EDTA (EDTA)
Consumibles
- NEB Blunt/TA Ligase Master Mix (NEB, M0367)
- Etanol al 80 % recién preparado con agua sin nucleasas
- Agua sin nucleasas (p. ej., ThermoFisher AM9937)
- 1.5 ml Eppendorf DNA LoBind tubes
- Eppendorf twin.tec® PCR plate 96 LoBind, semi-skirted (Eppendorf™, cat # 0030129504) with heat seals
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
Instrumental
- Magnetic rack
- Mezclador vórtex
- Mezclador Hula (mezclador giratorio suave)
- Microfuge
- Termociclador
- Cubeta con hielo
- Multichannel pipette and tips
- Pipeta y puntas P1000
- P200 pipette and tips
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- P2 pipette and tips
- Fluorímetro Qubit (o equivalente para el control de calidad)
Prepare the NEB Blunt/TA Ligase Master Mix according to the manufacturer's instructions, and place on ice:
Thaw the reagents at room temperature.
Spin down the reagent tubes for 5 seconds.
Ensure the reagents are fully mixed by performing 10 full volume pipette mixes.
Thaw the AMPure XP Beads (AXP) at room temperature and mix by vortexing. Keep the beads at room temperature.
Thaw the EDTA at room temperature and mix by vortexing. Then spin down and place on ice.
Thaw the Native Barcodes (NB01-96) required for your number of samples at room temperature. Individually mix the barcodes by pipetting, spin down, and place them on ice.
Select a unique barcode for every sample to be run together on the same flow cell. Up to 96 samples can be barcoded and combined in one experiment.
Please note: Only use one barcode per sample.
In a new 96-well plate, add the reagents in the following order per well mixing well by pipetting between each addition:
Reagent | Volume |
---|---|
Nuclease-free water | 3 µl |
End-prepped DNA | 0.75 µl |
Native Barcode (NB01-96) | 1.25 µl |
Blunt/TA Ligase Master Mix | 5 µl |
Total | 10 µl |
Mezclar pipeteando con suavidad y centrifugar brevemente la reacción para asegurarse de que se mezcla completamente.
Incubate for 20 minutes at room temperature.
Add the following volume of EDTA to each well and mix thoroughly by pipetting and spin down briefly.
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
EDTA cap colour | Volume per well |
---|---|
For clear cap EDTA | 1 µl |
For blue cap EDTA | 2 µl |
CONSEJO
EDTA is added at this step to stop the reaction.
Pool the barcoded samples in a 1.5 ml Eppendorf DNA LoBind tube.
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
Volume per sample | For 24 samples | For 48 samples | For 96 samples | |
---|---|---|---|---|
Total volume for preps using clear cap EDTA | 11 µl | 264 µl | 528 µl | 1,056 µl |
Total volume for preps using blue cap EDTA | 12 µl | 288 µl | 576 µl | 1,152 µl |
CONSEJO
We recommend checking the base of your tubes/plate are all the same volume before pooling and after to ensure all the liquid has been taken forward.
Resuspend the AMPure XP Beads (AXP) by vortexing.
Add 0.4X AMPure XP Beads (AXP) to the pooled reaction, and mix by pipetting.
Note: Ensure you follow the instructions for the cap colour of your EDTA tube.
Volume per sample | For 24 samples | For 48 samples | For 96 samples | |
---|---|---|---|---|
Volume of AXP for preps using clear cap EDTA | 4 µl | 106 µl | 211 µl | 422 µl |
Volume of AXP for preps using blue cap EDTA | 5 µl | 115 µl | 230 µl | 461 µl |
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Prepare 2 ml of fresh 80% ethanol in nuclease-free water.
Spin down the sample and pellet on a magnet for 5 minutes. Keep the plate on the magnetic rack until the eluate is clear and colourless, and pipette off the supernatant.
Keep the tube on the magnetic rack and wash the beads with 700 µl of freshly prepared 80% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
Repetir el paso anterior.
Spin down and place the tube back on the magnetic rack. Pipette off any residual ethanol. Allow the pellet to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
Remove the tube from the magnetic rack and resuspend the pellet in 35 µl nuclease-free water by gently flicking.
Incubate for 10 minutes at 37°C. Every 2 minutes, agitate the sample by gently flicking for 10 seconds to encourage DNA elution.
Pellet the beads on a magnetic rack until the eluate is clear and colourless.
Remove and retain 35 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.
CHECKPOINT
Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.
FIN DEL PROCESO
Take forward the barcoded DNA library to the adapter ligation and clean-up step. However, you may store the sample at 4°C overnight.
6. Adapter ligation and clean-up
Material
- Long Fragment Buffer (LFB) (tampón para fragmentos largos)
- Short Fragment Buffer (SFB) (tampón para fragmentos cortos)
- Elution Buffer (EB)
- Native Adapter (NA)
- AMPure XP Beads (AXP) (microesferas magnéticas)
Consumibles
- NEBNext® Quick Ligation Module (NEB, E6056)
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Tubos de ensayo Qubit™ (Invitrogen Q32856)
- Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851)
Instrumental
- Microcentrífuga
- Gradilla magnética
- Mezclador vórtex
- Mezclador Hula (mezclador giratorio suave)
- Termociclador
- Pipeta y puntas P1000
- Pipeta y puntas P200
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
- Ice bucket with ice
- Fluorímetro Qubit (o equivalente para el control de calidad)
IMPORTANTE
The Native Adapter (NA) used in this kit and protocol is not interchangeable with other sequencing adapters.
Prepare the NEBNext Quick Ligation Reaction Module according to the manufacturer's instructions, and place on ice:
Thaw the reagents at room temperature.
Spin down the reagent tubes for 5 seconds.
Ensure the reagents are fully mixed by performing 10 full volume pipette mixes. Note: Do NOT vortex the Quick T4 DNA Ligase.
The NEBNext Quick Ligation Reaction Buffer (5x) may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for several seconds to ensure the reagent is thoroughly mixed.
IMPORTANTE
Do not vortex the Quick T4 DNA Ligase.
Spin down the Native Adapter (NA) and Quick T4 DNA Ligase, pipette mix and place on ice.
Thaw the Elution Buffer (EB) at room temperature and mix by vortexing. Then spin down and place on ice.
IMPORTANTE
La fase de lavados tras la ligación de los adaptadores está diseñada para enriquecer los fragmentos de ADN de >3 kb o para purificar todos los fragmentos por igual, según el tampón que se utilice -Long Fragment Buffer (LFB) o Short Fragment Buffer (SFB).
Para enriquecer fragmentos de ADN de 3 kb o mayores, utilizar el tampón para fragmentos largos, Long Fragment Buffer (LFB).
Para conservar fragmentos de ADN de todos los tamaños, utilizar el tampón para fragmentos cortos, Short Fragment Buffer (SFB).
Descongelar el vial Long Fragment Buffer (LFB) o Short Fragment Buffer (SFB) a temperatura ambiente, agitar en vórtex, centrifugar y colocar en hielo.
In a 1.5 ml Eppendorf LoBind tube, mix in the following order:
Between each addition, pipette mix 10 - 20 times.
Reagent | Volume |
---|---|
Pooled barcoded sample | 30 µl |
Native Adapter (NA) | 5 µl |
NEBNext Quick Ligation Reaction Buffer (5X) | 10 µl |
Quick T4 DNA Ligase | 5 µl |
Total | 50 µl |
Mezclar pipeteando con suavidad y centrifugar brevemente la reacción para asegurarse de que se mezcla completamente.
Incubate the reaction for 20 minutes at room temperature.
IMPORTANTE
The next clean-up step uses Long Fragment Buffer (LFB) or Short Fragment Buffer (SFB) rather than 80% ethanol to wash the beads. The use of ethanol will be detrimental to the sequencing reaction.
Resuspend the AMPure XP Beads (AXP) by vortexing.
Add 20 µl of resuspended AMPure XP Beads (AXP) to the reaction and mix by pipetting.
Incubate on a Hula mixer (rotator mixer) for 10 minutes at room temperature.
Spin down the sample and pellet on the magnetic rack. Keep the tube on the magnet and pipette off the supernatant.
Wash the beads by adding either 125 μl Long Fragment Buffer (LFB) or Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
Repetir el paso anterior.
Spin down and place the tube back on the magnet. Pipette off any residual supernatant.
Remove the tube from the magnetic rack and resuspend pellet in 15 µl Elution Buffer (EB).
Spin down and incubate for 10 minutes at 37°C. Every 2 minutes, agitate the sample by gently flicking for 10 seconds to encourage DNA elution.
Precipitar las microesferas en un imán, durante al menos 1 minuto, hasta que el eluido se vuelva claro e incoloro.
Extraer 15 μl del eluido que contiene la biblioteca de ADN y conservar en un tubo de 1,5 ml Eppendorf DNA LoBind.
Deshechar las microesferas precipitadas.
CHECKPOINT
Cuantificar 1 μl de muestra eluida utilizando un fluorímetro Qubit.
Según el tamaño de los fragmentos de la biblioteca de ADN, prepare la biblioteca final en 12 µl de Elution Buffer (EB).
Longitud de fragmentos | Cantidad a cargar en la celda de flujo |
---|---|
Muy cortos (<1 kb) | 100 fmol |
Cortos (1-10 kb) | 35–50 fmol |
Largos (>10 kb) | 300 ng |
Nota: Si el producto obtenido en la biblioteca está por debajo de la cantidad de muestra inicial recomendada, cargue la biblioteca entera.
Si es necesario, recomendamos utilizar una calculadora de masa a mol, como la calculadora de NEB.
FIN DEL PROCESO
The prepared library is used for loading onto the flow cell. Store the library on ice or at 4°C until ready to load.
CONSEJO
Recomendaciones de guardado de la biblioteca
Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.
MEDIDA OPCIONAL
If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.
Depending on how many flow cells the library will be split across, more Elution Buffer (EB) than what is supplied in the kit will be required.
7. Priming and loading the SpotON flow cell
Material
- Flow Cell Flush (FCF)
- Flow Cell Tether (FCT) (anclaje de celda de flujo)
- Library Solution (LIS)
- Library Beads (LIB) (microesferas de carga de la biblioteca)
- Sequencing Buffer (SB)
Consumibles
- Tubos de 1,5 ml Eppendorf DNA LoBind
- Agua sin nucleasas (p. ej., ThermoFisher AM9937)
- (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)
Instrumental
- Dispositivo MinION o GridION
- SpotON Flow Cell
- Pantalla protectora celdas de flujo MinION/GridION
- Pipeta y puntas P1000
- Pipeta y puntas P100
- Pipeta y puntas P20
- Pipeta y puntas P10
IMPORTANTE
Nótese, este kit es compatible solo con las celdas de flujo R10.4.1 (FLO-MIN114).
CONSEJO
Cebado y carga de la celda de flujo
Se recomienda a los nuevos usuarios que miren el vídeo Priming and loading your flow cell antes de realizar su primer experimento.
Uso de Library Solution (LIS)
En la mayoría de experimentos de secuenciación, recomendamos usar Library Beads (LIB) para cargar la biblioteca en la celda de flujo. Nótese, si previamente se ha usado agua para cargar la biblioteca, se deberá usar Library Solution (LIS) en su lugar. Nota: Algunos clientes han notado que las bibliotecas viscosas pueden cargarse con mayor facilidad cuando no se usan Library Beads (LIB).
Descongelar los viales Sequencing Buffer (SB), Library Beads (LIB) o Library Solution (LIS), -si se requiere-, y un tubo de Flow Cell Flush (FCF) a temperatura ambiente. Agitar en vórtex, centrifugar y colocar en hielo.
IMPORTANTE
Para obtener un rendimiento de secuenciación óptimo y mejorar el rendimiento de las celdas de flujo MinION R10.4.1 (FLO-MIN114), recomendamos añadir seroalbúmina bovina (BSA), en una concentración total de 0,2 mg/ml, a la mezcla de cebado de la celda de flujo.
Nota: No se aconseja utilizar ningún otro tipo de albúmina (p. ej., seroalbúmina humana recombinante).
To prepare the flow cell priming mix with BSA, combine the following reagents in a fresh 1.5 ml Eppendorf DNA LoBind tube. Mix by inverting the tube and pipette mix at room temperature:
Reagents | Volume per flow cell |
---|---|
Flow Cell Flush (FCF) | 1,170 µl |
Bovine Serum Albumin (BSA) at 50 mg/ml | 5 µl |
Flow Cell Tether (FCT) | 30 µl |
Final total volume in tube | 1,205 µl |
Abrir la tapa del dispositivo MinION o GridION y deslizar la celda de flujo debajo del clip. Presionar la celda de flujo con firmeza para asegurar un contacto eléctrico y térmico adecuados.
MEDIDA OPCIONAL
Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.
Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.
Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.
Abrir el puerto de cebado de la celda de flujo, deslizando la tapa en el sentido de las agujas del reloj.
IMPORTANTE
Tenga cuidado a la hora de extraer el tampón de la celda de flujo. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.
Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:
- Ajustar una pipeta P1000 a 200 μl.
- Introducir la punta de la pipeta en el puerto de cebado.
- Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.
Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.
Cargar 800 μl de solución en el puerto de cebado, evitando introducir burbujas de aire. Esperar 5 minutos. Durante este tiempo, preparar la biblioteca para cargar siguiendo los pasos a continuación.
Mezclar con la pipeta, minuciosamente, el contenido del vial Library Beads (LIB).
IMPORTANTE
Este vial contiene microesferas en suspensión. Las microesferas precipitan muy rápido; por eso, es fundamental mezclarlas justo antes de usar.
En la mayoría de experimentos de secuenciación, se recomienda usar Library Beads (LIB) . El reactivo Library Solution (LIS) está indicado para bibliotecas de ADN más viscosas.
En un tubo nuevo de 1,5 ml Eppendorf DNA LoBind, preparar la biblioteca de la siguiente manera:
Reactivo | Volumen por celda de flujo |
---|---|
Sequencing Buffer (SB) | 37,5 µl |
Library Beads (LIB) mezcladas justo antes de usar, o Library Solution (LIS), si se requiere | 25,5 µl |
Biblioteca de ADN | 12 µl |
Total | 75 µl |
Completar el cebado de la celda de flujo:
- Levantar suavemente la tapa del puerto de carga SpotON.
- Cargar 200 µl de solución en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.
Mezclar la biblioteca pipeteando suavemente, justo antes de cargar.
Añadir, gota a gota, 75 μl de la biblioteca preparada en el puerto de muestra SpotON. Procurar que cada gota fluya hacia adentro del puerto antes de añadir la siguiente.
Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.
IMPORTANTE
Para obtener resultados de secuenciación óptimos, coloque la pantalla protectora sobre la celda de flujo justo después de cargar la biblioteca.
Recomendamos colocar la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.
Colocar la pantalla protectora de la siguiente manera:
Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.
Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.
ATENCIÓN
La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.
FIN DEL PROCESO
Cerrar la tapa del dispositivo y configurar un experimento de secuenciación en MinKNOW.
8. Data acquisition and basecalling
Aspectos generales del análisis de datos de nanoporos
Para obtener una descripción completa del análisis de datos de nanoporos, que incluya distintas posibilidades para el análisis de identificación y postidentificicación de bases, consultar el documento Data Analysis.
Cómo empezar a secuenciar
El programa MinKNOW realiza el control del dispositivo de secuenciación, la adquisición de datos y la identificación de bases en tiempo real. Una vez que el usuario ha instalado MinKNOW en su ordenador, hay diferentes maneras de llevar a cabo la secuenciación:
1. Adquisición de datos e identificación de bases en tiempo real con el programa MinKNOW.
Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run".
2. Adquisición de datos e identificación de bases en tiempo real con el dispositivo GridION.
Seguir las instrucciones del manual de usuario de GridION.
3. Adquisición de datos e identificación de bases en tiempo real con el dispositivo MinION Mk1C.
Seguir las instrucciones del manual de usuario de MinION Mk1C.
4. Adquisición de datos e identificación de bases en tiempo real con el dispositivo PromethION.
Seguir las instrucciones de los manuales de usuario de PromethION o PromethION 2 Solo.
5. Adquisición de datos e identificación de bases posterior mediante MinKNOW.
Seguir las instrucciones del protocolo de MinKNOW, desde el apartado "Starting a sequencing run" hasta el final del apartado "Completing a MinKNOW run". Al configurar los parámetros del experimento, ajustar la pestaña Basecalling (Identificación de bases) en posición de APAGADO. Al terminar el experimento de secuenciación, seguir las instrucciones del apartado "Post-run analysis" del protocolo de MinKNOW.
9. Análisis
Análisis posterior a la identificación de bases
Existen varias opciones para completar el análisis de los datos de identificación de bases:
1. Procesos de trabajo en EPI2ME
Para realizar un análisis de datos exhaustivo, Oxford Nanopore Technologies ofrece una serie de tutoriales y procesos de trabajo de bioinformática, disponibles en EPI2ME Labs, situados en la sección EPI2ME de la comunidad Nanopore. La plataforma proporciona un espacio donde los procesos de trabajo que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.
2. Herramientas de análisis
El departamento de Investigación de Oxford Nanopore Technologies ha creado una serie de herramientas de análisis que están disponibles en el repositorio Oxford Nanopore de GitHub. Las herramientas están diseñadas para usuarios avanzados y contienen instrucciones sobre cómo instalar y ejecutar el programa. Estas herramientas están públicamente disponibles y cuentan con un mantenimiento mínimo.
3. Herramientas de análisis desarrolladas por la comunidad
Si en ninguno de los recursos anteriores se proporciona un método de análisis que responda a las necesidades de investigación requeridas, puede consultar la sección Bioinformatics del centro de recursos. Varios miembros de la comunidad Nanopore han desarrollado sus propias herramientas y cartera de productos en desarrollo para analizar los datos de la secuenciación por nanoporos. La mayoría de ellas está disponible en GitHub. Oxford Nanopore Technologies no desarrolla ni mantiene esas herramientas y no garantiza que sean compatibles con la última configuración de química/software.
10. Reutilización y devolución de celdas de flujo
Material
- Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)
Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a entre 2 °C y 8 ⁰C.
El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.
CONSEJO
Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.
Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.
Aquí puede encontrar las instrucciones para devolver celdas de flujo.
IMPORTANTE
Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.
11. Issues during DNA/RNA extraction and library preparation for Kit 14
A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.
También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.
Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.
Baja calidad de la muestra
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Baja pureza del ADN (la lectura del Nanodrop para ADN OD 260/280 es <1,8 y OD 260/230 es <2,0-2,2) | El método de extracción de ADN no proporciona la pureza necesaria | Los efectos de los contaminantes se muestran en la página Contaminants. Pruebe con un método de extracción alternativo que no provoque el arrastre de contaminantes. Considere realizar un paso adicional de limpieza SPRI. |
Baja integridad del ARN (número de integridad del ARN <9,5 RIN o la banda ARNr se muestra como una mancha en el gel). | El ARN se degradó durante la extracción | Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling. |
El ARN tiene una longitud de fragmento más corta de lo esperado | El ARN se degradó durante la extracción | Probar un método de extracción de ARN diferente. Encontrará más información sobre RIN en la página RNA Integrity Number. Asimismo, dispone de información adicional en la página DNA/RNA Handling. Cuando se trabaje con ARN, recomendamos que el espacio de trabajo y el instrumental de laboratorio estén libres de ribonucleasas. |
Escasa recuperación de ADN tras la limpieza con microesferas magnéticas AMPure
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Escasa recuperación | Pérdida de ADN debido a una proporción de microesferas magnéticas AMPure por muestra inferior a lo previsto. | 1. Las microesferas magnéticas AMPure precipitan con rapidez; antes de añadirlas a la muestra hay que asegurarse de que estén bien resuspendidas. 2. Si la proporción de microesferas por muestra es inferior a 0.4:1, los fragmentos de ADN, sean del tamaño que sean, se perderán durante la limpieza. |
Escasa recuperación | Los fragmentos de ADN son más cortos de lo esperado | Cuanto menor sea la proporción de microesferas magnéticas AMPure por muestra, más rigurosa será la selección de fragmentos largos frente a los cortos. Determinar siempre la longitud de la muestra de ADN en un gel de agarosa u otros métodos de electroforesis en gel, y, a continuación, calcular la cantidad adecuada de microesferas magnéticas que se debe utilizar. |
Escasa recuperación tras la preparación de extremos | El paso de lavado utilizó etanol a <70 % | Cuando se utilice etanol a <70 %, el ADN se eluirá de las microesferas magnéticas. Asegúrese de utilizar el porcentaje correcto. |
12. Issues during the sequencing run for Kit 14
A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.
También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.
Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.
Menos poros al inicio de la secuenciación que después de verificar la celda de flujo
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | Se introdujo una burbuja de aire en la matriz de nanoporos | Tras comprobar el número de poros presente en la celda de flujo, es imprescindible quitar las burbujas que haya cerca del puerto de cebado. Si no se quitan, pueden desplazarse a la matriz de nanoporos y dañar de manera irreversible los nanoporos expuestos al aire. En este vídeo se muestran algunas buenas prácticas para evitar que esto ocurra. |
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | La celda de flujo no está colocada correctamente | Detener el ciclo de secuenciación, quitar la celda de flujo del dispositivo e insertarla de nuevo. Comprobar que está firmemente asentada en el dispositivo y que ha alcanzado la temperatura deseada. Si procede, probar con una posición diferente del dispositivo (GriION/PromethION). |
MinKNOW presentó al inicio de la secuenciación un número de poros inferior al indicado durante la comprobación de la celda de flujo | La presencia de contaminantes en la biblioteca ha dañado o bloqueado los poros | El número de poros resultante tras la comprobación de la celda de flujo se realiza usando el control de calidad de las moléculas de ADN presentes en el tampón de almacenamiento de la celda de flujo. Al inicio de la secuenciación, se utiliza la misma biblioteca para estimar el número de poros activos. Por este motivo, se estima que puede haber una variabilidad del 10 % en el número de poros detectados. Tener un número de poros considerablemente inferior al inicio de la secuenciación puede deberse a la presencia de contaminantes en la biblioteca que hayan dañado las membranas o bloqueado los poros. Para mejorar la pureza del material de entrada tal vez sea necesario usar métodos de purificación o extracción de ADN/ARN alternativos. Los efectos de los contaminantes están descritos en la página Contaminants. Se recomienda, probar con un método de extracción alternativo que no provoque el arrastre de contaminantes. |
Error en el script de MinKNOW
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW muestra el mensaje "Error en el script" | Reiniciar el ordenador y reiniciar MinKNOW. Si el problema continúa, reúna los archivos de registro MinKNOW log files y contacte con el servicio de asistencia técnica. Si no dispone de otro dispositivo de secuenciación, recomendamos que guarde la celda de flujo con la biblioteca cargada a 4 °C y contacte con el servicio de asistencia técnica para recibir recomendaciones de almacenamiento adicionales. |
Pore occupancy below 40%
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | 10–20 fmol of good quality library can be loaded on to a MinION/GridION flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Native Barcoding Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FCT tube). Make sure FCT was added to FCF before priming. |
Longitud de lectura más corta de lo esperado
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Longitud de lectura más corta de lo esperado | Fragmentación no deseada de la muestra de ADN | La longitud de lectura refleja la longitud del fragmento de la muestra de ADN. La muestra de ADN se puede fragmentar durante la extracción de la preparación de la biblioteca. 1. Consulte la sección de buenas prácticas de los métodos de extracción en la página Extraction Methods de la comunidad Nanopore. 2. Visualizar la distribución de la longitud de los fragmentos de las muestras de ADN en un gel de agarosa antes de proceder a la preparación de la biblioteca. En la imagen superior, la muestra 1 contiene alto peso molecular, mientras que la muestra 2 se ha fragmentado. 3. Durante la preparación de la biblioteca, evitar pipetear y agitar en vórtex cuando se mezclen los reactivos. Dar suaves golpes con el dedo o invertir el vial es suficiente. |
Gran proporción de poros no disponibles
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Gran proporción de poros no disponibles (se muestran en azul oscuro en el panel de canales y en el gráfico de actividad de poros) Conforme pasa el tiempo, el gráfico de actividad de poros de arriba muestra una proporción creciente de poros no disponibles. | Hay contaminantes presentes en la muestra | Algunos contaminantes se pueden eliminar de los poros mediante la función de desbloqueo incorporada en MinKNOW. Si funciona, el estado de los poros cambiará a "sequencing pores" (secuenciación de poros). Si la porción poros no disponibles se mantiene elevada o aumenta, pruebe una de las siguientes opciones: 1. Realizar un enjuague de nucleasa con el kit de lavado Flow Cell Wash Kit (EXP-WSH004) 2. Realizar varios ciclos de PCR para intentar diluir cualquier contaminante que pueda estar causando problemas. |
Gran proporción de poros inactivos
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Gran proporción de poros inactivos/no disponibles (se muestran en azul claro en el panel de canales y en el gráfico de actividad de poros. Los poros o membranas están dañados de manera irreversible) | Se han introducido burbujas de aire en la celda de flujo | Las burbujas de aire introducidas durante el cebado de la celda y la carga de la biblioteca pueden dañar los poros de forma permanente. Para conocer las buenas prácticas de cebado y carga de la celda de flujo, ver el vídeo Priming and loading your flow cell |
Gran proporción de poros inactivos/no disponibles | Ciertos compuestos copurificados con ADN | Compuestos conocidos, incluidos los polisacáridos, se asocian generalmente con el ADN genómico de las plantas. 1. Consulte la página Plant leaf DNA extraction method. 2. Limpiar usando el kit QIAGEN PowerClean Pro. 3. Realizar una amplificación del genoma completo con la muestra original de ADNg utilizando el kit QIAGEN REPLI-g. |
Gran proporción de poros inactivos/no disponibles | Hay contaminantes presentes en la muestra | Los efectos de los contaminantes se muestran en la página Contaminants. Probar con un método de extracción alternativo que no provoque el arrastre de contaminantes. |
Reduction in sequencing speed and q-score later into the run
Observation | Possible cause | Comments and actions |
---|---|---|
Reduction in sequencing speed and q-score later into the run | Fast fuel consumption is typically seen in Kit 9 chemistry (e.g. SQK-LSK109) when the flow cell is overloaded with library. Please see the appropriate protocol for your DNA library to find the recommendation. | Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell. |
Fluctuación de la temperatura
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
Fluctuación de la temperatura | La celda de flujo ha perdido contacto con el dispositivo | Comprobar que una almohadilla térmica cubra la placa metálica de la parte posterior de la celda de flujo. Reinsertar la celda de flujo y presionar para asegurarse de que las clavijas del conector estén bien conectadas al dispositivo. Si el problema continúa, contacte con el servicio de asistencia técnica. |
Error al intentar alcanzar la temperatura deseada
Observación | Posible causa | Comentarios y acciones recomendadas |
---|---|---|
MinKNOW muestra el mensaje "Error al intentar alcanzar la temperatura deseada" | El dispositivo ha sido colocado en un lugar a una temperatura ambiente inferior a la media o en un lugar con escasa ventilación (lo que provoca el sobrecalientamiento de las celdas de flujo). | MinKNOW tiene un tiempo predeterminado para que las celdas de flujo alcancen la temperatura fijada. Una vez transcurrido ese tiempo, aparece un mensaje de error, pero el experimento de secuenciación continua. Secuenciar a una temperatura incorrecta puede llevar a una disminución en el rendimiento y a generar un índice de calidad Qscore menor. Corrija la ubicación del dispositivo, procure que esté a temperatura ambiente y tenga buena ventilación; a continuación, reinicie el proceso en MinKNOW. Encontrará más información sobre el control de temperatura del MinION en este enlace. |