Ultra-Long DNA Sequencing Kit V14 (SQK-ULK114)

Overview

  • Extraction of ultra-high molecular weight (uHMW) gDNA
  • Reliably generate and sequence ultra-long read length N50s (>50 kb)
  • High yield
  • Compatible with R10.4.1 flow cells

For Research Use Only

This is an Early Access product For more information about our Early Access programmes, please see this article on product release phases.

Document version: ULK_9177_v114_revM_27Nov2022

1. Overview of the protocol

IMPORTANTE

Este es un producto de acceso anticipado

Para tener más información sobre los programas de acceso anticipado, consulte este artículo sobre las fases de lanzamiento del producto.

Procure usar la versión más reciente del protocolo.

Ultra-Long DNA Sequencing Kit features:

This kit is recommended for users who:

  • Want to reliably generate ultra-long read length N50s (>50 kb), with yields of 10-20+ Gbases on MinION/GridION
  • Sequence long reads from extracted uHMW DNA

Introduction to the Ultra-Long DNA Sequencing Kit protocol (SQK-ULK114)

This protocol describes the complete workflow from extracting gDNA from frozen tissue or purified cells from whole blood to the sequencing of ultra-high molecular weight (uHMW) gDNA using the Ultra-Long DNA Sequencing Kit (SQK-ULK114). We have also included the procedure to isolate white blood cells (WBCs) from whole blood and how to quantify gDNA developed by Paul A ‘Giron’ Koetsier & Eric J Cantor, 2021.

We have used the NEB Monarch® HMW DNA Extraction Kit for Tissue (cat # T3060) to extract the uHMW gDNA for both input types when developing this protocol. Alternative kits are available from NEB which are specifically designed for the extraction from blood and cells. However, they have not been validated by Oxford Nanopore Technologies.

Per reaction, there is enough library generated for multiple consecutive loads onto a flow cell to increase output. To load a library six times on a MinION/GridION flow cell, a flow cell wash is required to recover channels.

Steps in the sequencing workflow: Prepare for your experiment You will need to:

  • If working with whole blood, isolate white blood cells. If working with frozen tissue, isolate cells from the tissue
  • Extract your uHMW gDNA
  • Quantify your sample
  • Ensure you have your sequencing kit, the correct equipment and third-party reagents
  • If not already installed, download the software for acquiring and analysing your data
  • Check your flow cell(s) to ensure it has enough pores for a good sequencing run

__Library preparation__ You will need to:
  • Tagment your DNA using a diluted fragmentation mix
  • Attach Rapid Adapters to the DNA ends
  • Clean-up your sample by precipitating your DNA and elute overnight
  • Prime the flow cell and load your DNA library into the flow cell

ULK114 workflow V1-3
Sequencing and analysis You will need to:

  • Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
  • Optional: Start the EPI2ME software and select a workflow for further analysis

Flow cell loading and flushing

The Ultra-Long DNA Sequencing Kit (SQK-ULK114) protocol generates viscous DNA which can affect flow cell loading. We have modified the flow cell loading steps to take account for this. Please take care and follow the steps carefully to avoid damaging the flow cell.

To increase output, we recommend loading an ultra-long library three times per flow cell. A flow cell wash using the Flow Cell Wash Kit (EXP-WSH004) is required between each subsequent library load to recover channels. To run a second library straight away, please follow the modified method in this protocol: To run another library of ultra-long DNA on a MinION/GridION flow cell straight away.

Best practice for handling uHMW gDNA

When mixing, we recommend using wide-bore pipette tips to mix the full volume of a sample to ensure thorough mixing whilst minimising mechanical shearing of long fragments.

To preserve longer DNA, mix slower and more gently. Vortexing on low speeds may also be used at the expense of very long fragments.

While precautions should be taken to ensure that DNA fragment lengths are preserved, there should be no compromise to ensuring that reagents are thoroughly mixed with DNA. Insufficient mixing will lead to reduced read length and output.

For further information, please refer to the troubleshooting section.

IMPORTANTE

Compatibility of this protocol

This protocol should only be used in combination with:

  • Ultra-Long DNA Sequencing Kit (SQK-ULK114)
  • Flow Cell Wash Kit (EXP-WSH004)
  • R10.4.1 flow cells (FLO-MIN114)
  • EEB Expansion (EXP-EEB001)
  • Ultra-Long Auxiliary Vials (EXP-ULA001)

2. Equipment and consumables

Material
  • Ultra-Long DNA Sequencing Kit V14 (SQK-ULK114)
  • Monarch® HMW DNA Extraction Kit for Tissue (New England Biolabs, T3060)
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Consumibles
  • 1.5 ml Eppendorf DNA LoBind tubes
  • 2 ml Eppendorf DNA LoBind tubes
  • 5 ml Eppendorf DNA LoBind tubes
  • 15 ml Falcon tubes
  • Isopropanol, 100% (Fisher, 10723124)
  • Ethanol, 100% (e.g. Fisher, 16606002)
  • Qubit dsDNA BR Assay Kit (Invitrogen, Q32850)
  • Tubos de ensayo Qubit™ (Invitrogen Q32856)
  • (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

Instrumental
  • Thermal cycler or heat block
  • Thermomixer set at 56°C (suitable for 1.5 ml, 2 ml and 5 ml tubes)
  • Mezclador vórtex
  • Microfuge
  • Wide-bore pipette tips
  • P1000 pipette and tips
  • Pipeta y puntas P200
  • Qubit fluorometer (or equivalent)
  • Ice bucket with ice
  • Timer
IMPORTANTE

The above list of materials, consumables, and equipment is for the library preparation section of the protocol. Depending on the sample type, additional reagents will be needed for sample processing and DNA extraction; these are listed in the "Sample preparation" section of the protocol.

For this protocol, you will need to extract gDNA from 6 million cells in 40 µl PBS before starting the library preparation.

This protocol has been developed using the NEB Monarch® HMW DNA Extraction Kit for Tissue (cat # T3060). Alternative kits are available from NEB which are specifically designed for the extraction from blood and cells. However, they have not been validated by Oxford Nanopore Technologies.

This method has been validated for use on the following inputs:

  • 6 million white blood cells isolated from 1.6 ml blood (bovine), using RBC Lysis Solution (QIAGEN, cat # 158904)
  • 6 million cells isolated from 1 g frozen tissue, using pluriSelect Cell Straining equipment.

Ultra-Long DNA Sequencing Kit (SQK-ULK114) contents

ULK114 tubes

Name Acronym Cap colour Number of vials Fill volume per vial (µl)
Rapid Adapter RA Green 1 40
Fragmentation Mix FRA Amber 1 50
FRA Dilution Buffer FDB Clear 1 1,600
Elution Buffer EB Black 2 1,500
Extraction EB EEB Orange 3 1,700
Sequencing Buffer UL SBU Red 2 1,000
Loading Solution UL LSU White cap, pink label 1 200
Flush Tether UL FTU Purple 1 600
Flow Cell Flush FCF Blue 2 15,500
Precipitation Buffer PTB Blue 2 1,700
Precipitation Star PS Yellow 6 1 star

Flow Cell Wash Kit (EXP-WSH004) contents

EXP-WSH004 kit contents v2

Contents Volume (µl) No. of tubes No. of uses
Wash Mix (WMX) 15 1 6
Wash Diluent (DIL) 1,300 2 6
Storage Buffer (S) 1,600 2 6
  • Wash Mix (WMX) contains DNase I.
  • Wash Diluent (DIL) contains the exonuclease buffer that maximises activity of the DNase I.
  • The Storage Buffer allows flow cells to be stored for extended periods of time.

To maximise the use of the Ultra-Long DNA Sequencing Kit V14, the EEB Expansion (EXP-EEB001) and the Ultra-Long Auxiliary Vials (EXP-ULA001) expansion packs are available.

These expansions provide extra library preparation and flow cell priming reagents to allow users to maximise the use out of their Ultra-Long DNA Sequencing Kit V14.

The EEB Expansion (EXP-EEB001) contains enough reagents for at least 6 standard extraction elution steps.

The Ultra-Long Auxiliary Vials (EXP-ULA001) provides enough reagents to carry out twelve additional flow cell loads on MinION or PromethION flow cells.

EEB Expansion (EXP-EEB001) contents:

EXP-EEB001 Kit content

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Extraction EB EEB White 1 6,000

Ultra-Long Auxiliary Vials (EXP-ULA001) contents:

EXP-ULA001 Kit content

Name Acronym Cap colour No. of vials Fill volume per vial (μl)
Elution Buffer EB Black 1 1,500
Sequencing Buffer UL SBU Red 2 1,000
Loading Solution UL LSU White cap, pink label 1 200
Flush Tether UL FTU Purple 1 600
Flow Cell Flush FCF Clear cap, light blue label 1 15,500

3. Computer requirements and software

Requisitos informáticos para el MinION Mk1B

Para secuenciar con el MinION Mk1B es necesario tener un ordenador o portátil de alto rendimiento, que pueda soportar la velocidad de adquisición de datos. Encontrará más información en el documento MinION Mk1B IT Requirements.

Requisitos informáticos para el MinION Mk1C

El MinION Mk1C contiene ordenador y pantalla integrados, lo que elimina la dependencia de cualquier accesorio para generar y analizar datos de nanoporos. Encontrará más información en el documento MinION Mk1C IT Requirements.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.

For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.

EPI2ME (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the EPI2ME Platform protocol.

Verificar la celda de flujo

Antes de empezar el experimento de secuenciación, recomendamos verificar el número de poros disponibles, presentes en la celda de flujo. La comprobación deberá realizarse en los primeros tres meses desde su adquisición, si se trata de celdas de flujo MinION, GridION o PromethION, y en las primeras cuatro semanas tras la compra de celdas de flujo Flongle. Oxford Nanopore Technologies sustituirá cualquier celda de flujo con un número de poros inferior al indicado en la tabla siguiente, siempre y cuando el resultado se notifique dentro de los dos días siguientes a la comprobación y se hayan seguido las instrucciones de almacenamiento. Para verificar la celda de flujo, siga las instrucciones del documento Flow Cell Check.

Celda de flujo Número mínimo de poros activos cubierto por la garantía
Flongle 50
MinION/GridION 800
PromethION 5000

4. Isolation of white blood cells (WBCs) from whole blood

Material
  • 1.6 ml of whole blood

Consumibles
  • RBC Lysis Solution (QIAGEN, 158106)
  • Phosphate-buffered saline (PBS), pH 7.4 (Thermo Fisher, 10010023)
  • 15 ml Falcon tubes
  • Tubos de 1,5 ml Eppendorf DNA LoBind

Instrumental
  • Microfuge
  • P1000 pipette and tips
  • P200 pipette and tips
  • P20 pipette and tips

White blood cell sample preparation for the Ultra-long DNA experiment

Approximately 6 million isolated white blood cells must be prepared from 1.6 ml of whole blood to use as input in the Ultra-long DNA experiment.

Users may isolate white blood cells by any means they feel are most appropriate for the whole blood sample to be used. If 6 million cells have been isolated, users can start from the uHMW gDNA extraction step.

Add 4.8 ml of RBC Lysis Solution to 1.6 ml of whole blood in a 15 ml Falcon tube.

Gently invert the tube ten times to mix.

Incubate for 5 minutes at room temperature and gently invert twice during the incubation.

Centrifuge at 2000 x g for 2 minutes at 4°C to pellet the white blood cells.

Discard the supernatant by pouring. There will be ~200 µl supernatant remaining in the tube.

Resuspend the cells in the residual supernatant by gently flicking the tube.

Make up the volume to 1.6 ml with 1x PBS.

Repeat steps 1-7 twice more to complete three washes in total.

CONSEJO

If any red colouration persists, repeat the wash step until the cell pellet is white.

After the final spin, remove the entire supernatant by pouring and aspirating any remaining supernatant.

Resuspend the cell pellet in 40 µl 1x PBS. There will be approximately 6 million cells in the suspension.

FIN DEL PROCESO

Take the cell pellet forward into the "uHMW gDNA extraction" step.

5. Preparation of tissue samples for gDNA extraction

Material
  • Cell Suspension Buffer (CSB): 0.35 M sucrose, 100 mM EDTA, 50 mM Tris.HCl pH 8
  • Frozen tissue sample

Consumibles
  • Phosphate-buffered saline (PBS), pH 7.4 (Thermo Fisher, 10010023)
  • 1 M Tris-HCl pH 8.0 (Thermo Scientific, 15893661)
  • 0.5 M EDTA, pH 8 (Thermo Scientific, R1021)
  • 2.5 M sucrose
  • Nuclease-free water (e.g. ThermoFisher, cat #AM9937)
  • 50 ml Falcon tubes
  • 5 ml Eppendorf DNA LoBind tubes

Instrumental
  • Centrifuge suitable for 5 ml Eppendorf tubes (Eppendorf centrifuge 5804/5804 R or equivalent)
  • Eppendorf tube rack suitable for 5 ml Eppendorf tubes
  • Scalpel
  • TissueRuptor II (QIAGEN, cat # 9002755)
  • TissueRuptor Disposable Probes (QIAGEN, cat # 990890)
  • Florescent microscope with functionality to quantify nuclei (Logos CELENA S Digital Imaging System or equivalent)
  • Heat block equipped with thermoblock suitable for 5 ml Eppendorf tubes
  • 200 µm PluriStrainer® (pluriSelect, 43-50200-03)
  • 100 µm PluriStrainer® (pluriSelect, 43-50100-51)
  • 50 µm PluriStrainer® (pluriSelect, 43-50050-03)
  • 30 µm PluriStrainer® (pluriSelect, 43-50030-03)
  • PluriStrainer® Connector Ring (pluriSelect, 41-50000-03)
  • PluriStrainer® Funnel (pluriSelect, 42-50000)
  • P1000 pipette and tips
  • 10 ml syringe

Prepare the Cell Suspension Buffer (CSB) as follows:

Reagent Stock Final conc. Volume
Tris.HCl, pH 8 1 M 0.05 M 50 ml
EDTA 0.5 M 0.1 M 200 ml
Sucrose 2.5 M 0.35 M 140 ml
Nuclease-free water - - 610 ml
Total - - 1000 ml

Add 1 g of the frozen tissue sample to a weighing boat.

Using the scalpel, slice the tissue into thin strips and then dice the sample.

Transfer the tissue sample to a fresh 50 ml Falcon tube.

Add 10 ml of the Cell Suspension Buffer (CSB) into the 50 ml Falcon tube.

Using the QIAGEN TissueRuptor, gently homogenise the tissue sample.

  1. Insert the probe and pulse at minimum speed for one second. Stir the homogenate between each pulse.
  2. Repeat this five times.
IMPORTANTE

During homogenisation, only apply as much force as is required to gently break up the tissue. Excessive force will damage the nuclei and make them difficult to quantify. It is not a problem if there is intact material remaining at the end of this step, as it will be re-processed in later steps.

Assemble the pluriStrainer apparatus with a 200 μm strainer, connector ring, funnel and 50 ml Falcon tube according to the manufacturer’s instructions.

Pass the full volume of the tissue sample homogenate through the 200 µm PluriStrainer®.

The homogenate can be gently agitated, and a small amount of negative pressure can be applied with the syringe to help pass the homogenate through the strainer.

Disassemble the pluriStrainer® apparatus according to the manufacturer's instructions, setting aside the strained homogenate in the 50 ml Falcon tube for later use.

Repeat the homogenisation process on any intact tissue caught by the pluriStrainer®:

  1. Transfer any intact tissue caught by the 200 µm pluriStrainer® into a fresh 50 ml Falcon tube by inverting the strainer and tapping out the intact tissue.
    Tip: A spatula can be used to help remove the intact tissue from the strainer.

  2. Add 10 ml of the Cell Suspension Buffer (CSB) into the 50 ml Falcon tube.

Repeat steps 6-10 two more times to perform a total of three rounds of tissue homogenisation.

Combine the contents of the 50 ml Falcon tube with the original strained homogenate set aside in step 10.

CHECKPOINT

The combined volume of 200 µm strained homogenate is ready for further processing.

Strain the 200 µm strained homogenate through the 100 µm pluriStrainer®:

  1. Assemble the pluriStrainer apparatus with a 100 µm strainer, connector ring, funnel and 50 ml Falcon tube according to the manufacturer’s instructions.

  2. Pass the full volume of the 200 µm strained homogenate through the 100 µm PluriStrainer®. Tip: The homogenate can be gently agitated, and a small amount of negative pressure can be applied with the syringe to help pass the homogenate through the strainer.

  3. Disassemble the pluriStrainer® and retain the 100 µm strained homogenate in the 50 ml Falcon tube.

Strain the 100 µm strained homogenate through the 50 µm pluriStrainer®:

  1. Assemble the pluriStrainer apparatus with a 50 µm strainer, connector ring, funnel and 50 ml Falcon tube according to the manufacturer’s instructions.

  2. Pass the full volume of the 100 µm strained homogenate through the 50 µm PluriStrainer®. Tip: The homogenate can be gently agitated, and a small amount of negative pressure can be applied with the syringe to help pass the homogenate through the strainer.

  3. Disassemble the pluriStrainer® and retain the 50 µm strained homogenate in the 50 ml Falcon tube.

Strain the 50 µm strained homogenate through the 30 µm pluriStrainer®:

  1. Assemble the pluriStrainer apparatus with a 30 µm strainer, connector ring, funnel and 50 ml Falcon tube according to the manufacturer’s instructions.

  2. Pass the full volume of the 50 µm strained homogenate through the 30 µm PluriStrainer®. Tip: The homogenate can be gently agitated, and a small amount of negative pressure can be applied with the syringe to help pass the homogenate through the strainer.

  3. Disassemble the pluriStrainer® and retain the 30 µm strained homogenate in the 50 ml Falcon tube.

Determine the concentration of the nuclei in the purified homogenate using a fluorescent microscope and a stain appropriate for the nuclei in the sample.

Take forward a volume corresponding to 6 million nuclei and add this to a 5 ml Eppendorf DNA LoBind tube.

Centrifuge the 5 ml Eppendorf tube at 16,000 x g for five minutes to pellet the nuclei/cells.

Pipette off all the supernatant and discard, taking care not to disturb the pellet.

Add 40 µl of PBS to the 5 ml Eppendorf DNA LoBind tube.

Thoroughly mix the tube by repeatedly flicking. Ensure the pellet breaks up and no clumps remain in the nuclei/cell suspension.

Note: You may need to flick quite hard and thoroughly to ensure the pellet breaks up and no clumps remain.

FIN DEL PROCESO

Take the nuclei/cell suspension forward into the "uHMW gDNA extraction" step.

6. uHMW gDNA extraction

Material
  • 6 million cells/nuclei isolated from frozen tissue or white blood cells isolated from whole blood
  • Extraction EB (EEB)
  • Monarch® HMW DNA Extraction Kit for Tissue (New England Biolabs, T3060)

Consumibles
  • 5 ml Eppendorf DNA LoBind tubes
  • Phosphate-buffered saline (PBS), pH 7.4 (Thermo Fisher, 10010023)
  • Isopropanol, 100% (Fisher, 10723124)
  • Ethanol, 100% (e.g. Fisher, 16606002)
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • 2 ml Eppendorf DNA LoBind tubes

Instrumental
  • Heat block set at 56°C
  • Thermomixer set at 56°C (suitable for 1.5 ml, 2 ml and 5 ml tubes)
  • Mezclador Hula (mezclador giratorio suave)
  • Microfuge
  • Wide-bore pipette tips
  • P1000 pipette and tips
  • P200 pipette and tips
  • P20 pipette and tips
  • Eppendorf 5424 centrifuge (or equivalent)

Thaw the Extraction EB (EEB) at room temperature, mix by vortexing and place on ice.

Add 6 million cells resuspended in 40 µl PBS to a fresh 5 ml tube. Cells can be isolated from cell culture, white blood cells from blood, or tissue according to the above methods.

CONSEJO

Thorough but gentle resuspension of cells is required to ensure efficient lysis and to prevent heterogeneity in the subsequent steps.

In a separate 2 ml Eppendorf DNA LoBind tube, combine the following reagents:

Reagent Volume
Monarch HMW gDNA Tissue Lysis Buffer 1,800 µl
Proteinase K 60 µl
Total 1860 µl

Add 1.8 ml of mixed Monarch HMW gDNA Tissue Lysis Buffer and Proteinase K to the resuspended cells.

Gently mix by slowly pipetting the reaction five times using a 1 ml wide-bore pipette tip.

Incubate the reaction at 56°C for 10 minutes.

Note: When using cell lines, we have found that this step can be omitted.

Using a regular pipette tip, add 15 µl of Monarch RNase A.

Gently mix by slowly pipetting the reaction five times using a 1 ml wide-bore pipette tip.

Incubate the reaction at 56°C for 10 minutes on a thermomixer at 650 rpm.

CONSEJO

When using cell lines, we have found the protein removal steps can be omitted. If using cell lines, proceed directly to step 13.

Using a regular pipette tip, add 900 µl of the Monarch Protein Separation Solution to the reaction and mix using a Hula Mixer (rotator mixer) for 10 minutes, rotating at 3 rpm.

Centrifuge the reaction at 16,000 x g for 10 minutes at 4°C to separate the protein from the DNA.

DNA will be present in the upper phase, whereas protein and other contaminants will be in the lower phase.

Using a wide-bore pipette tip, carefully aspirate the upper phase containing the DNA and transfer to a fresh 5 ml tube without disturbing the phase below.

The DNA in the upper phase should be extremely viscous and should only be possible to aspirate using a wide-bore pipette tip.

CONSEJO

If the protein phase is disturbed, the tube can be centrifuged again at 16,000 x g for 10 minutes at 4°C.

Add three Monarch DNA Capture Beads to the collected DNA phase (or to the lysis reaction if proceeded directly from Step 9).

Note: The first bead is a sacrificial bead and will remain at the bottom of the tube throughout the remainder of the process.

Add 2.5 ml isopropanol to the tube and mix using a Hula Mixer (rotator mixer) for 20 minutes rotating at 3 rpm. Ensure the DNA has fully precipitated around the glass beads.

CONSEJO

Check the DNA is binding to the beads by looking for a viscous mass around the beads. The mixing step can be extended if the DNA is not obviously condensing around the beads.

Leave the tube to stand for 1 minute, without rotating, at room temperature.

Aspirate the supernatant from the tube, being careful not to aspirate the DNA that is bound to the beads. Check for and remove any supernatant remaining in the lid of the tube.

Note: if ~100 µl of supernatant is remaining in the tube, perfomance will not be affected.

Add 2 ml of Monarch gDNA Wash Buffer to the tube containing DNA bound to the beads and invert the tube to mix.

Ensure ethanol is added to the Monarch gDNA Wash Buffer as per kit guidance.

Aspirate the Wash Buffer, being careful not to aspirate the DNA that is bound to the beads. Check for and remove any Wash Buffer remaining in the lid of the tube.

Add 2 ml of Monarch gDNA Wash Buffer to the tube containing the DNA bound to the beads.

Add 560 µl of Extraction EB (EEB) to a fresh 2 ml Eppendorf tube.

Aspirate the Wash Buffer, being careful not to aspirate the DNA that is bound to the beads. Check for and remove any Wash Buffer remaining in the lid of the tube.

Transfer the beads to a Monarch Bead Retainer inserted in a Monarch Collection Tube II.

Briefly spin the tube using a microfuge to remove any remaining Wash Buffer from the beads. Dispose of the collection tube containing residual wash buffer.

IMPORTANTE

Do NOT use the Monarch Elution Buffer II in the Monarch® HMW DNA Extraction Kit for Tissue.

Immediately transfer the beads from the bead retainer into the 2 ml tube containing 560 µl of Extraction EB (EEB).

IMPORTANTE

Beads should be transferred immediately to ensure that they do not over-dry, which could lead to increased solubilisation times.

Incubate the tube for 10 minutes at 56°C.

Pour the eluate and beads into a clean bead retainer inserted in a collection tube. Spin the tube at 1000 x g for 1 minute to separate eluate from the beads. Dispose of beads and bead retainer.

Add 200 µl of Extraction EB (EEB) to the collection tube to bring the total elution volume to 760 µl.

Transfer the eluate to a fresh 2 ml Eppendorf DNA LoBind tube.

Incubate the eluate for 10 minutes at 56°C.

Gently mix the eluate by slowly pipetting 10 times using a 1 ml wide-bore pipette tip.

Thorough but gentle resuspension of DNA is required to prevent heterogeneity in the sample.

FIN DEL PROCESO

Take forward the resuspended DNA into the quantification step. However, at this point it is possible to store the sample at room temperature overnight.

7. (Optional) gDNA quantification

Material
  • Monarch® DNA Capture Beads
  • Monarch® Bead Retainer
  • Monarch® Collection Tubes II

Consumibles
  • 2 ml Eppendorf DNA LoBind tubes
  • Qubit dsDNA BR Assay Kit (Invitrogen, Q32850)

Instrumental
  • Mezclador vórtex
  • Centrifuge
  • Qubit fluorometer (or equivalent)
  • P200 pipette and tips

Quantification of uHMW gDNA

The method to quantify uHMW gDNA was developed by Paul A ‘Giron’ Koetsier & Eric J Cantor, 2021, which recommends the use of a regular P200 pipette and tip.

This optional uHMW gDNA quantification step has also been included in the protocol for user QC. However, this step can be omitted and 750 µl of DNA in Extraction EB (EEB) can be taken straight into the tagmentation step of the protocol.

Use a regular P200 pipette tip to aspirate 10 µl of gDNA.

CONSEJO

If the DNA is particularly viscous, the aspirated DNA can be separated from the sample by forcing the sample against the side of the tube to break the DNA off. It is critical that the DNA is completely homogenous, so that the 10 µl of sample that is removed is representative of the entire sample.

Dispense the aspirated gDNA into a fresh 2 ml Eppendorf DNA LoBind tube.

Add a Monarch DNA Capture Bead to the 10 µl of gDNA and vortex aggressively for 1 minute to shear the gDNA.

Transfer the gDNA and beads into a clean Monarch Bead Retainer inserted in a Monarch Collection Tube II. Spin the tube at 1000 x g for 1 minute to separate gDNA from the beads. Dispose of beads and bead retainer.

Transfer the gDNA into a clean 1.5 ml Eppendorf DNA LoBind tube.

CHECKPOINT

Quantify the sample using a Qubit fluorometer. The expected yield is 30-40 µg of DNA.

FIN DEL PROCESO

Take forward 750 µl DNA into the tagmentation step.

8. Tagmentation

Material
  • 750 µl of extracted uHMW gDNA in EEB
  • Rapid Adapter (RA)
  • Fragmentation Mix (FRA)
  • FRA Dilution Buffer (FDB)

Consumibles
  • 1.5 ml Eppendorf DNA LoBind tubes

Instrumental
  • Thermal cycler or heat block
  • Microfuge
  • Wide-bore pipette tips
  • P1000 pipette and tips
  • Pipeta y puntas P20
  • Ice bucket with ice

Best practice for handling uHMW gDNA

When mixing, we recommend using wide-bore pipette tips to mix the full volume of a sample to ensure thorough mixing whilst minimising mechanical shearing of long fragments.

To preserve longer DNA, mix slower and more gently. Vortexing on low speeds may also be used at the expense of very long fragments.

While precautions should be taken to ensure that DNA fragment lengths are preserved, there should be no compromise to ensuring that reagents are thoroughly mixed with DNA. Insufficient mixing will lead to reduced read length and output.

For further information, please refer to the troubleshooting section.

Thaw the the kit components at room temperature, spin down briefly using a microfuge and mix by pipetting as indicated by the table below:

Once thawed, keep all the kit components on ice.

Reagent Thaw at room temperature Briefly spin down Mix well by pipetting
Fragmentation Mix (FRA) Not frozen
FRA dilution buffer (FDB) Not frozen
Rapid Adapter (RA) Not frozen

In a 1.5 ml Eppendorf DNA LoBind tube, dilute the Fragmentation Mix (FRA) with FRA Dilution Buffer (FDB) as follows:

Reagent Volume
Fragmentation Mix (FRA) 6 µl
FRA dilution buffer (FDB) 244 µl
Total 250 µl

Mix the diluted Fragmentation Mix (FRA) by pipetting.

Using a regular pipette tip, add 250 µl of diluted Fragmentation Mix (FRA) to the 750 µl of extracted DNA. Stir the reaction with the pipette tip whilst expelling the diluted Fragmentation Mix (FRA) to ensure an even distribution.

Immediately mix the reaction by slowly pipetting 10 times with a wide-bore pipette tip.

Visually check the reagents are thoroughly mixed. It is important to immediately mix the diluted Fragmentation Mix (FRA) with the DNA thoroughly.

Incubate the reaction as follows:

Temperature Time
Room temperature 10 minutes
75°C 10 minutes
On ice Cool on ice for a minimum of 10 minutes

Note: the reaction must be cooled on ice before adding Rapid Adapter (RA) to prevent denaturing the enzyme.

Add 5 µl Rapid Adapter (RA) to the reaction using a regular pipette tip.

Gently mix the reaction by slowly pipetting five times using a 1 ml wide-bore pipette tip.

Note: visually check to ensure the reaction is thoroughly mixed.

Incubate the reaction for 30 minutes at room temperature.

9. Clean-up

Material
  • Elution Buffer from the Oxford Nanopore kit (EB)
  • Precipitation Buffer (PTB)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind

Instrumental
  • Centrifuge
  • Microfuge
  • Mezclador Hula (mezclador giratorio suave)
  • P200 pipette and tips
  • P1000 pipette and tips
  • Wide-bore pipette tips
IMPORTANTE

The Precipitation Star (PS) found in the Ultra-Long DNA Sequencing Kit V14 (SQK-ULK114) is currently not used for this method.

The method has been temporarily updated to omit the use of the Precipitation Star (PS) in the Clean-up step of this protocol. This is due to observations that using the Precipitation Star (PS) can lead to, in some cases, immediate pore loss after loading the ultra-long DNA library.

While we continue to investigate, this solution will prevent potential issues and has no negative impact on flow cell output, read length or pore occupancy.

For more information please visit this post in the Nanopore Community.

Thaw the kit components at room temperature, spin down briefly using a microfuge and mix by vortexing as indicated by the table below:

Reagent Thaw at room temperature Briefly spin down Mix well by pipetting
Precipitation buffer (PTB)
Elution Buffer (EB)

Once thawed, keep all the kit components on ice.

Using a regular pipette tip, add 500 µl of Precipitation Buffer (PTB) to the sample.

Mix the sample by rotating on a Hula Mixer (rotator mixer) for 20 minutes at 3 rpm.

Visually inspect to check the DNA has precipitated, forming a glassy white mass.

Centrifuge the sample at 1000 x g for 1 minute.

Using a regular pipette tip, carefully remove the supernatant from the tube, taking care not to aspirate the DNA pellet.

Centrifuge the sample at 1000 x g for 1 minute.

Using a regular pipette tip, carefully remove any residual supernatant from the tube, taking care not to aspirate the DNA pellet.

Using a regular pipette tip, add 300 µl of Elution Buffer (EB) to the tube containing the DNA. Incubate overnight at room temperature, for a minimum of 12 hours.

Gently mix the DNA library by slowly pipetting 10 times with a wide-bore pipette tip.

Thorough but gentle resuspension of DNA is required to prevent heterogeneity in the sample.

FIN DEL PROCESO

Take the DNA library forwards for loading into the flow cell. Store the library on ice until ready to load.

CONSEJO

Recomendaciones de guardado de la biblioteca

Se recomienda guardar las bibliotecas en tubos Eppendorf DNA LoBind a 4 ⁰C, durante periodos de tiempo cortos o en caso de uso repetido, por ejemplo, para recargar celdas de flujo entre lavados. Para uso individual y para conservar a largo plazo por periodos de más de 3 meses, se recomienda guardar las bibliotecas a -80 ⁰C en tubos Eppendorf DNA LoBind.

10. Priming and loading the SpotON flow cell

Material
  • Flow Cell Flush (FCF) (enjuague de celda de flujo)
  • Flush Tether UL (FTU)
  • Loading Solution UL (LSU)
  • Sequencing Buffer UL (SBU)

Consumibles
  • Tubos de 1,5 ml Eppendorf DNA LoBind
  • Celda de flujo MinION/GridION
  • (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

Instrumental
  • Dispositivo MinION o GridION
  • Pantalla protectora para celdas de flujo MinION
  • Pipeta y puntas P1000
  • Pipeta y puntas P200
  • Pipeta y puntas P20
IMPORTANTE

Please note, this kit is only compatible with R10.4.1 flow cells (FLO-MIN114).

Only use the reagents provided with the SQK-ULK114 kit for priming and loading the flow cell. Reagents from other kits are not compatible with this protocol.

CONSEJO

Cebado y carga de la celda de flujo

Se recomienda a los nuevos usuarios que miren el vídeo Priming and loading your flow cell antes de realizar su primer experimento.

IMPORTANTE

Ensure the MinION Flow Cell Light Shield is not installed on to your flow cell until after loading your DNA library.

To ensure optimal interactions and access to the flow cell ports, please ensure the MinION Flow Cell Light Shield is not installed on your flow cell until after loading your DNA library.

If the MinION Flow Cell Light Shield has already been installed, remove it from the flow cell and store until required later in the protocol.

Thaw the Sequencing Buffer UL (SBU), Loading Solution UL (LSU), Flush Tether UL (FTU) and one tube of Flow Cell Flush (FCF) at room temperature and mix by vortexing. Then spin down and place on ice.

In a new tube, prepare the DNA library for loading as follows. Use a wide-bore pipette tip for the addition of the DNA library:

Reagent Volume per flow cell
Sequencing Buffer UL (SBU) 37.5 µl
Loading Solution UL (LSU) 3.7 µl
DNA library 33.8 µl
Total 75 µl

Note: Ensure the Sequencing Buffer UL (SBU) and Loading Solution UL (LSU) are thoroughly mixed by pipetting before the addition of the DNA library.

Gently mix the prepared DNA library by slowly pipetting ten times using a wide-bore pipette tip.

Incubate at room temperature for 30 minutes then gently mix by slowly pipetting with a wide-bore tip. Visually inspect to ensure the sample is homogenous.

Abrir la tapa del dispositivo MinION o GridION y deslizar la celda de flujo debajo del clip. Presionar la celda de flujo con firmeza para asegurar un contacto eléctrico y térmico adecuados.

Flow Cell Loading Diagrams Step 1a

Flow Cell Loading Diagrams Step 1b

MEDIDA OPCIONAL

Antes de cargar la biblioteca, verifique la celda de flujo para determinar el número de poros disponible.

Si se ha verificado con anterioridad la cantidad de poros presentes en la celda de flujo, este paso se puede omitir.

Dispone de más información en las instrucciones de comprobación de la celda de flujo, del protocolo de MinKNOW.

Para abrir el puerto de cebado de la celda de flujo, deslizar la tapa en el sentido de las agujas del reloj.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de cebado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

IMPORTANTE

For optimal sequencing performance and improved output on R10.4.1 flow cells (FLO-MIN114), we recommend adding Bovine Serum Albumin (BSA) to the flow cell priming mix at a final concentration of 0.2 mg/ml. We do not recommend using recombinant BSA.

For optimal sequencing performance and improved output on R10.4.1 flow cells (FLO-MIN114), we recommend adding Bovine Serum Albumin (BSA) to the flow cell priming mix at a final concentration of 0.2 mg/ml. We do not recommend using recombinant BSA.

To prepare the flow cell priming mix with BSA, combine the following reagents in a 1.5 ml Eppendorf tube, and mix by inverting the tube and pipette mix at room temperature:

Reagent Volume
Bovine Serum Albumin (BSA) at 50 mg/ml 5 µl
Flush Tether UL (FTU) 30 µl
Flow Cell Flush (FCF) 1170 µl
Total 1205 µl
IMPORTANTE

Ensure the MinION Flow Cell Light Shield is not installed on the flow cell at this stage.

If the MinION Flow Cell Light Shield has already been installed, remove it from the flow cell and store until required later in the protocol.

Load 800 µl of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

Completar el cebado de la celda de flujo:

  1. Levantar suavemente la tapa del puerto de muestra SpotON.
  2. Cargar 200 µl de mezcla de cebado en el puerto de cebado (no en el puerto de muestra SpotON), evitando introducir burbujas de aire.

Flow Cell Loading Diagrams Step 5

Flow Cell Loading Diagrams Step 06 V5 SPANISH 2

Ensure the SpotON port and Priming port covers of the flow cell are open in preparation for loading.

GridION Step 1

Using a wide-bore pipette tip, load the DNA library onto the SpotON port until 75 μl has been loaded.

Take care not to place the pipette tip directly onto/into the SpotON port as this could damage the array.

Allow the DNA library to flow through the SpotON port by waiting up to two minutes.

If the DNA library does not enter the SpotON port, apply negative pressure in the flow cell as explained further below.

GridION ULK lib load

Cover Waste port 2 and the Priming port with clean, gloved fingers.

GridION Step 4

Using a fully depressed P200 pipette, insert the tip in Waste port 1 whilst Waste port 2 and the Priming port are covered.

GridION Step 5 6

Very slowly aspirate to pull the DNA library into the SpotON sample port. Closely watch the DNA library on the SportON port and completely remove the pipette as soon as the library starts to be pulled into the port.

Note: Take care to not apply too much negative pressure too quickly to avoid bringing air bubbles into the flow cell. Air bubbles will cause irreversible damage to the flow cell.

GridION-Step 7 8 9 looping

Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.

Step 8 update - SPANISH

Flow Cell Loading Diagrams Step 9 SPANISH

IMPORTANTE

Para obtener resultados de secuenciación óptimos, instale la pantalla protectora justo después de cargar la biblioteca.

Recomendamos poner la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.

Colocar la pantalla protectora de la siguiente manera:

  1. Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.

  2. Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.

J2264 - Light shield animation Flow Cell FAW optimised. SPANISH

ATENCIÓN

La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.

FIN DEL PROCESO

Cerrar la tapa del dispositivo y configurar un experimento de secuenciación en MinKNOW.

We recommend loading an ultra-long DNA library three times per flow cell to increase output.

A nuclease wash using the Flow Cell Wash Kit (EXP-WSH004) is required between each subsequent library load to recover channels and maximise sequencing output.

For MinION/GridION flow cells, there is enough library generated for six consecutive loads per reaction, using 33.8 µl of fresh library combined with 37.5 µl of Sequencing Buffer (SBU) and 3.7 µl of Loading Solution (LSU) before re-loading for further sequencing.

Please follow Flushing a MinION/GridION Flow Cell in the Flow Cell Wash Kit protocol for the nuclease wash instructions. To run another library straight away, follow the modified method: Reloading ultra-long DNA library on a MinION/GridION flow cell.

11. Reloading ultra-long DNA library on a MinION/GridION flow cell

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)
  • Flush Tether UL (FTU)
  • Flow Cell Flush (FCF) (enjuague de celda de flujo)
  • Sequencing Buffer UL (SBU)
  • Loading Solution UL (LSU)

Consumibles
  • 1.5 ml Eppendorf DNA LoBind tubes
  • (Opcional) Seroalbúmina bovina (BSA) (50 mg/ml) (p. ej., Invitrogen™ UltraPure™ BSA 50 mg/ml, AM2616)

Instrumental
  • P1000 pipette and tips
  • Pipeta y puntas P200
  • Pipeta y puntas P20
IMPORTANTE

Before reloading your library or loading a new library, please ensure you wash the flow cell using the Flow Cell Wash Kit (EXP-WSH004).

Follow the instructions in the Flow Cell Wash Kit (EXP-WSH004) for MinION/GridION protocol.

  • This washing procedure aims to remove most of the initial library and prepare the flow cell for loading of a subsequent library.
  • Data acquisition in MinKNOW should be paused during the wash procedure and library loading.
  • After the flow cell has been washed, another library can be loaded.
CONSEJO

We recommend keeping the light shield on the flow cell during washing if a second library will be loaded straight away.

If the flow cell is to be washed and stored, the light shield can be removed.

To run a second library of ultra-long DNA straight after flushing a flow cell, we recommend removing all fluid from the waste channel after each priming step.

Thaw the Sequencing Buffer UL (SBU), Loading Solution UL (LSU), Flush Tether UL (FTU) and one tube of Flow Cell Flush (FCF) at room temperature and mix by vortexing. Then spin down and place on ice.

In a new tube, prepare the DNA library for loading as follows. Use a wide-bore pipette tip for the addition of the DNA library:

Reagent Volume per flow cell
Sequencing Buffer UL (SBU) 37.5 µl
Loading Solution UL (LSU) 3.7 µl
DNA library 33.8 µl
Total 75 µl

Note: Ensure the Sequencing Buffer UL (SBU) and Loading Solution UL (LSU) are thoroughly mixed by pipetting before the addition of the DNA library.

Gently mix the prepared DNA library by slowly pipetting ten times using a wide-bore pipette tip.

Incubate at room temperature for 30 minutes then gently mix by slowly pipetting with a wide-bore tip. Visually inspect to ensure the sample is homogenous.

Slide the priming port cover of the flow cell clockwise to open the priming port.

Flow Cell Loading Diagrams Step 2

IMPORTANTE

Tenga cuidado a la hora de extraer el tampón. No retire más de 20-30 μl y asegúrese de que el tampón cubra la matriz de poros en todo momento. La introducción de burbujas de aire en la matriz puede dañar los poros de manera irreversible.

Tras abrir el puerto de cebado, verificar si hay una burbuja de aire bajo la tapa. Retirar una pequeña cantidad de tampón para quitar las burbujas:

  1. Ajustar una pipeta P1000 a 200 μl.
  2. Introducir la punta de la pipeta en el puerto de cebado.
  3. Girar la rueda hasta que el indicador de volumen marque 220-230 μl o hasta que se pueda ver una pequeña cantidad de tampón entrar en la punta de la pipeta.

Nota: Comprobar que haya un flujo continuo de tampón circulando desde el puerto de cebado a través de la matriz de poros.

Flow Cell Loading Diagrams Step 03 V5

IMPORTANTE

Para obtener un rendimiento de secuenciación óptimo y mejorar el rendimiento de las celdas de flujo MinION R10.4.1 (FLO-MIN114), recomendamos añadir seroalbúmina bovina (BSA), en una concentración total de 0,2 mg/ml, a la mezcla de cebado de la celda de flujo.

Nota: No se aconseja utilizar ningún otro tipo de albúmina (p. ej., seroalbúmina humana recombinante).

To prepare the flow cell priming mix with BSA, combine the following reagents in a 1.5 ml Eppendorf tube, and mix by inverting the tube and pipette mix at room temperature:

Reagent Volume
Bovine Serum Albumin (BSA) at 50 mg/ml 5 µl
Flush Tether UL (FTU) 30 µl
Flow Cell Flush (FCF) 1170 µl
Total 1205 µl

Load 800 µl of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles. Wait for five minutes.

Flow Cell Loading Diagrams Step 04 V5

IMPORTANTE

It is vital to wait five minutes between the priming mix flushes to ensure effective removal of the nuclease.

Close the priming port cover and ensure the SpotON sample port cover is closed.

Flow Cell Loading Diagrams Step 9

IMPORTANTE

It is vital that the flow cell priming port and SpotON sample port are closed before removing the waste buffer to prevent air from being drawn across the sensor array area, which would lead to a significant loss of sequencing channels.

Remove the waste buffer, as follows:

  1. Close the priming port and SpotON sample port cover, as indicated in the figure below.
  2. Insert a P1000 pipette into waste port 1 and remove the waste buffer.

Note: As both the priming port and SpotON sample port are closed, no fluid should leave the sensor array area.

Flow cell ports

Slide open the priming port and load 200 µl of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles.

Close the priming port and use a P1000 to remove all fluid from the waste channel through Waste Port 1.

Ensure the SpotON port and Priming port covers of the flow cell are open in preparation for loading.

GridION Step 1

Using a wide-bore pipette tip, load the DNA library onto the SpotON port until 75 μl has been loaded.

Take care not to place the pipette tip directly onto/into the SpotON port as this could damage the array.

Allow the DNA library to flow through the SpotON port by waiting up to two minutes.

If the DNA library does not enter the SpotON port, apply negative pressure in the flow cell as explained further below.

GridION ULK lib load

Cover Waste port 2 and the Priming port with clean, gloved fingers.

MinION Mk1B Step 4

Using a fully depressed P200 pipette, insert the tip in Waste port 1 whilst Waste port 2 and the Priming port are covered.

MinION Mk1B Step 5 6

Very slowly aspirate to pull the DNA library into the SpotON sample port. Closely watch the DNA library on the SportON port and completely remove the pipette as soon as the library starts to be pulled into the port.

Note: Take care to not apply too much negative pressure too quickly to avoid bringing air bubbles into the flow cell. Air bubbles will cause irreversible damage to the flow cell.

Mk1B-Step 7 8 9 looping

Volver a colocar con cuidado, la tapa del puerto de muestra SpotON, procurando que el tapón encaje en el agujero y cerrar el puerto de cebado.

Step 8 update - SPANISH

Flow Cell Loading Diagrams Step 9 SPANISH

IMPORTANTE

Para obtener resultados de secuenciación óptimos, instale la pantalla protectora justo después de cargar la biblioteca.

Recomendamos poner la pantalla protectora en la celda de flujo y dejarla puesta mientras la biblioteca esté cargada, incluyendo los lavados y pasos de recarga. Retirar la pantalla cuando se haya extraído la biblioteca de la celda de flujo.

Colocar la pantalla protectora de la siguiente manera:

  1. Colocar con cuidado el borde delantero de la pantalla protectora contra el clip. Nota: No hacer fuerza sobre ella.

  2. Colocar la pantalla protectora con suavidad sobre la celda de flujo. La pieza debe asentarse alrededor de la tapa SpotON y debe cubrir por completo la sección superior de la celda de flujo.

J2264 - Light shield animation Flow Cell FAW optimised. SPANISH

ATENCIÓN

La pantalla protectora no está fijada a la celda de flujo. Una vez colocada, es necesario manipularla con cuidado.

Once the flow cell is reloaded, resume the sequencing run on MinKNOW and trigger a pore scan.

To resume sequencing run, navigate to the Experiments page, click 'Resume' and select flow cell position.

To manually trigger a channel scan, click 'Start pore scan' and select flow cell position.

For further information, please see the MinKNOW protocol.

Resume run:

Resume Run ULK114 1

Resume Run ULK114 2 FC select

Pore scan:

Start pore scan ULK 1

Start pore scan ULK 2 FC select

12. Adquisición de datos e identificación de bases

Cómo empezar a secuenciar

Una vez cargada la celda de flujo, se puede iniciar el experimento en MinKNOW -el programa de secuenciación que gestiona el dispositivo, la adquisición de datos y la identificación de bases en tiempo real. Encontrará intrucciones de uso más detalladas en el protocolo de MinKNOW.

MinKNOW se puede configurar y utilizar para secuenciar de diferentes maneras:

  • En un ordenador conectado a un dispositivo de secuenciación, ya sea directamente o en remoto.
  • Directamente desde un dispositivo de secuenciación GridION, MinION Mk1C o PromethION 24/48.

Encontrará más información sobre el uso de MinKNOW en los manuales de usuario de los dispositivos:


Para empezar un experimento de secuenciación en MinKNOW:

1. Ir a la página de inicio y pulsar "Iniciar secuenciación". start

2. Introducir los datos del experimento, como el nombre, la posición de la celda de flujo y el identificador de muestra. Grid start seq

3. En la pestaña Kit, seleccionar el kit de secuenciación usado durante la preparación de la biblioteca. kit selection

4. En las pestañas Run Options/Opciones de ejecución y Análisis, es posible configurar los parámetros de secuenciación adaptándolos al experimento o mantener la configuración predeterminada.

Nota: Si la identificación de bases estaba desactivada durante la configuración de un experimento, se puede activar en MinKNOW en la fase posejecución. Para más información, consulte el protocolo de MinKNOW.

5. En la pestaña Output/Datos de salida, es posible elegir entre configurar los parámetros de salida o mantener la configuración predeterminada. step5c

6. En la pestaña Review/Revisar, revisar las opciones seleccionadas y pulsar Start/Empezar. Step6

Análisis de datos tras la secuenciación

Una vez la secuenciación ha finalizado, la celda de flujo se puede reutilizar o devolver, como se indica en la sección Reutilización y devoluciones de celdas de flujo.

Tras la secuenciación y la identificación de bases, se puede proceder a analizar los datos. Si desea más información sobre las opciones de identificación de bases y de análisis posterior, consulte el documento Data Analysis.

En la sección Downstream analysis/Análisis posterior, le presentamos otras opciones para analizar los datos.

13. Reutilización y devoluciones de las celdas de flujo

Material
  • Flow Cell Wash Kit (EXP-WSH004) (kit de lavado de celda de flujo)

Si al terminar el experimento desea volver a usar la celda de flujo, siga las instrucciones del protocolo Flow Cell Wash Kit y guarde la celda de flujo lavada a 2-8 ⁰C.

El protocolo Flow Cell Wash Kit está disponible en la comunidad Nanopore.

CONSEJO

Una vez terminado el experimento, recomendamos lavar la celda de flujo cuanto antes. Si no es posible, se puede dejar en el dispositivo y lavar al día siguiente.

Otra posibilidad es seguir el procedimiento de devolución para lavar la celda de flujo y enviarla a Oxford Nanopore.

Aquí puede encontrar las instrucciones para devolver celdas de flujo.

Nota: Antes de proceder a su devolución, las celdas de flujo deben lavarse con agua desionizada.

IMPORTANTE

Ante cualquier duda o pregunta acerca del experimento de secuenciación, consulte la guía de resolución de problemas, Troubleshooting Guide, que se encuentra en la versión en línea de este protocolo.

14. Análisis posterior

Análisis posterior a la identificación de bases

Existen varias opciones para completar el análisis de los datos de bases identificadas:

1. Plataforma EPI2ME

La plataforma EPI2ME es un servicio de análisis de datos, alojado en la red, desarrollado por Metrichor Ltd., filial de Oxford Nanopore Technologies. EPI2ME ofrece una serie de procesos de análisis, p. ej., de identificación metagenómica, identificación de especies a partir de un código (barcoding), alineación e identificación de variantes estructurales. El análisis no requiere equipo ni capacidad computacional extra y proporciona un informe fácil de interpretar con los resultados. Para obtener información sobre cómo realizar un proceso de análisis en EPI2ME, siga las instrucciones del protocolo, empezando por la sección "Starting data analysis".

2. EPI2ME Labs, tutoriales y procesos de trabajo

Para realizar un análisis de datos más exhaustivo, Oxford Nanopore Technologies ofrece una serie de tutoriales y procesos de trabajo de bioinformática, disponibles en EPI2ME Labs, que encontrará en la sección del mismo nombre de la comunidad Nanopore. La plataforma proporciona un espacio donde los proyectos que depositan en GitHub nuestros equipos de Investigación y Aplicaciones, se pueden exponer con textos descriptivos, código bioinformático funcional y datos de ejemplo.

3. Herramientas de análisis para la investigación

El departamento de Investigación de Oxford Nanopore Technologies ha creado una serie de herramientas de análisis que están disponibles en el repositorio Oxford Nanopore de GitHub. Las herramientas están diseñadas para usuarios avanzados y contienen instrucciones sobre cómo instalar y ejecutar el programa. Estas herramientas están públicamente disponibles y cuentan con un mantenimiento mínimo.

4. Herramientas de análisis desarrolladas por la comunidad

Si no se proporciona en ninguno de los recursos anteriores un método de análisis que responda a las necesidades de investigación requeridas, puede consultar la sección Bioinformatics del centro de recursos Resource Centre. Varios miembros de la comunidad Nanopore han desarrollado sus propias herramientas y segmentaciones para analizar datos de secuenciación por nanoporos. La mayoría de ellos está disponible en GitHub. Nótese que Oxford Nanopore Technologies no desarrolla ni mantiene esas herramientas y no garantiza que sean compatibles con la última configuración de química/software.

15. Issues during library preparation

A continuación hay una lista de los problemas más frecuentes, con algunas posibles causas y soluciones propuestas.

También disponemos de una página de preguntas frecuentes, FAQ, en la sección Support de la comunidad Nanopore.

Si ha probado las soluciones propuestas y continúa teniendo problemas, póngase en contacto con el departamento de asistencia técnica, bien por correo electrónico (support@nanoporetech.com) o a través del Live Chat de la comunidad Nanopore.

Troubleshooting

Observation Comments and actions
Low throughput 1. Vortex gently after adding the diluted Fragmentation Mix (FRA) to break up the largest fragments.
2. Ensure the diluted Fragmentation Mix (FRA) is thoroughly mixed with the gDNA.
3. Use less input material if the DNA library was too viscous to load onto the flow cell.
DNA is too viscous and will not load onto a flow cell 1. Lower the input material to reduce the amount of gDNA going into the library preparation and reduce viscosity.
2. If DNA library will not load using the method outlined in this protocol, slowly pipette mix 5 times with a standard P200 pipette set to the full volume of the library and reload the flow cell.
Read lengths are not long enough 1. Increase input material.
Note: Library viscosity increases with more gDNA.
2. Reduce volume of Fragmentation Mix (FRA) added to FRA Dilution Buffer (FDB) to avoid over-fragmentation of gDNA.
Note: We do not recommend diluting less than 2 µl Fragmentation Mix (FRA).
3. We recommend using PFGE to check the extracted gDNA is of ultra-high molecular weight (uHMW), thus capable of generating ultra-long read lengths.
No sequencing output 1. Check gDNA has been recovered in library preparation using a NanoDrop spectrophotometer.
2. Check viscosity of the sample. The library should be viscous if it contains uHMW gDNA in this protocol.
Aspirating supernatant when the DNA has precipitated Take care to not aspirate the DNA. Remove smaller volumes of supernatant incrementally to reduce the risk of aspirating the DNA.
Mixing Mix slowly and carefully to prevent DNA shearing. Low vortexing can be used to mix at the expense of ultra-long reads. With vortexing, long read lengths of ~90 kb N50 can still be generated with improved outputs.
No DNA recovered from the library preparation clean-up If the DNA is no longer viscous or the NanoDrop reading is low, DNA may have been lost during the clean-up step of the library preparation.
1. Ensure uHMW DNA is used or users risk DNA loss.
2. Take care to not aspirate the precipitated DNA during the clean-up step. To avoid this, remove smaller volumes of supernatant incrementally. Ensure as much supernatant is removed as possible.

Last updated: 6/21/2024

Document options

MinION