Main menu

SMURF-seq: efficient copy number profiling on long-read sequencers


We present SMURF-seq, a protocol to efficiently sequence short DNA molecules on a long-read sequencer by randomly ligating them to form long molecules. Applying SMURF-seq using the Oxford Nanopore MinION yields up to 30 fragments per read, providing an average of 6.2 and up to 7.5 million mappable fragments per run, increasing information throughput for read-counting applications. We apply SMURF-seq on the MinION to generate copy number profiles. A comparison with profiles from Illumina sequencing reveals that SMURF-seq attains similar accuracy. More broadly, SMURF-seq expands the utility of long-read sequencers for read-counting applications.

Authors: Rishvanth K. Prabakar, Liya Xu, James Hicks, Andrew D. Smith

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag