Main menu

Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats


Generating a complete, de novo genome assembly for prokaryotes is often considered a solved problem. However, we here show that Pseudomonas koreensis P19E3 harbors multiple, near identical repeat pairs up to 70 kilobase pairs in length. Beyond long repeats, the P19E3 assembly was further complicated by a shufflon region. Its complex genome could not be de novo assembled with long reads produced by Pacific Biosciences technology, but required very long reads from the Oxford Nanopore Technology. Another important factor for a full genomic resolution was the choice of assembly algorithm. Importantly, a repeat analysis indicated that very complex bacterial genomes represent a general phenomenon beyond Pseudomonas. Roughly 10% of 9331 complete bacterial and a handful of 293 complete archaeal genomes represented this dark matter for de novo genome assembly of prokaryotes. Several of these dark matter genome assemblies contained repeats far beyond the resolution of the sequencing technology employed and likely contain errors, other genomes were closed employing labor-intense steps like cosmid libraries, primer walking or optical mapping. Using very long sequencing reads in combination with assemblers capable of resolving long, near identical repeats will bring most prokaryotic genomes within reach of fast and complete de novo genome assembly.

Authors: Michael Schmid, Daniel Frei, Andrea Patrignani, Ralph Schlapbach, Juerg E. Frey, Mitja N.P. Remus-Emsermann, Christian H. Ahrens

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag