Main menu

nanoDoc: RNA modification detection using Nanopore raw reads with Deep One-Class Classification


Advances in Nanopore single-molecule direct RNA sequencing (DRS) have presented the possibility of detecting comprehensive post-transcriptional modifications (PTMs) as an alternative to experimental approaches combined with high-throughput sequencing. It has been shown that the DRS method can detect the change in the raw electric current signal of a PTM; however, the accuracy and reliability still require improvement.

Here, we presented a new software, called nanoDoc, for detecting PTMs from DRS data using a deep neural network. Current signal deviations caused by PTMs are analyzed via Deep One-Class Classification with a convolutional neural network. Using a ribosomal RNA dataset, the software archive displayed an area under the curve (AUC) accuracy of 0.96 for the detection of 23 different kinds of modifications in Escherichia coli and Saccharomyces cerevisiae.

We also demonstrated a tentative classification of PTMs using unsupervised clustering. Finally, we applied this software to severe acute respiratory syndrome coronavirus 2 data and identified commonly modified sites among three groups.

Authors: Hiroki Ueda

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

ナノポア技術

ナノポアの最新ニュースを購読 リソースと発表文献 Nanopore Communityとは

Oxford Nanoporeについて

ニュース 会社沿革 持続可能性 経営陣 メディアリソース & お問い合わせ先 投資家向け パートナー向け Oxford Nanopore社で働く 現在の募集状況 営業上の情報 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag