Main menu

London Calling 2023: The potential clinical utility of amplicon and targeted nanopore sequencing for rare disease diagnosis


Next-generation sequencing has driven research into rare diseases and molecular diagnostics for over a decade. Up to 45% of inherited retinal disease patients remain unsolved after clinical testing, with variants of uncertain significance (VUS), non-coding variants, whole-genome sequencing (WGS) intractable genes, and structural rearrangements thought to contribute.

We investigated the potential clinical utility of nanopore sequencing in a case-driven study to improve the detection and characterisation of variants in WGS unsolved patients recruited from the Inherited Eye Disease clinics at Moorfields Eye Hospital. Amplicon sequencing of retinal gene transcripts from patient blood demonstrated the previously undetectable splicing effect of coding and non-coding VUS. Targeted nanopore sequencing enabled read-through of the WGS-intractable OPN1LW/OPN1MW gene array, distant variant phasing, and detection of structural rearrangement. Nanopore sequencing is effective where traditional methods have failed to conclude diagnostic odysseys and may be an effective tool in the battery of molecular diagnostic tests.

Authors: Gavin Arno

入門

MinION Starter Packを購入 ナノポア製品の販売 シークエンスサービスプロバイダー グローバルディストリビューター

お問い合わせ

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

Oxford Nanoporeについて

Contact us 経営陣 メディアリソース & お問い合わせ先 投資家向け Oxford Nanopore社で働く BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Japanese flag